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Abstract. This paper describes the scoring policy used by the agents
of our simulation robot soccer team. In a given situation this policy
enables an agent to determine the best shooting point in the goal, to-
gether with an associated probability of scoring when the ball is shot
to this point. The ball motion can be regarded as a geometrically con-
strained continuous-time Markov process. Our main contribution is an
approximate method for learning relevant statistics of such a process.

1 Introduction

RoboCup is an attempt to foster AI and intelligent robotics research by providing a
standard problem where a wide range of technologies can be integrated and examined.
Since the main purpose of a soccer game is to score goals, it is important for a robotic
soccer agent to have a clear policy about whether he should attempt to score in a given
situation, and if so, which point in the goal he should aim for. In this paper we describe
the implementation of a scoring policy that was used by the agents of our UvA Trilearn

2001 team, which reached fourth place in the RoboCup-2001 simulation world cup.
An interesting aspect of the soccer server simulator is that, although the motion

noise added to the ball is known, an analytical solution of the corresponding diffusion
process (position of the ball in each time step) is difficult for two reasons: (1) the noise
added by the server is by construction non-white, and (2) the process is geometrically
constrained (the ball must end up inside the goal). We propose an approximate solution
to the problem of learning the statistics of such a geometrically-constrained continuous-
time Markov process, which we believe can also be useful in other applications.

2 The Optimal Scoring Problem

The optimal scoring problem can be stated as follows: find the point in the goal where
the probability of scoring is the highest when the ball is shot to this point in a given
situation. This problem can be decomposed into two independent subproblems:

1. Determine the probability that the ball will enter the goal when shot to a specific
point in the goal from a given position.

2. Determine the probability of passing the goalkeeper in a given situation.



Since the two subproblems are independent, the probability of scoring when shooting
at a certain point in the goal is equal to the product of these two probabilities.

2.1 Subproblem 1: Probability that the Ball Enters the Goal

When the ball is shot to a point somewhere inside the goal, it can miss the goal due to
motion noise (introduced by the server). We are interested in the probability that the
ball will end up somewhere inside the goal when shot at a specific point. To this end
we need to compute the deviation of the ball from the aiming point. This deviation is
caused by the noise which is added to the ball velocity in each simulation cycle.1 The
complication arises from the fact that the added noise in each cycle depends on the
speed of the ball in the previous cycle, making the noise non-white.
Treating the ball motion as a continuous-time Markov process, computing exact

statistics for each time step would require the solution of a corresponding Fokker-
Planck equation [2], further complicated by the fact that the motion noise is non-white.
Moreover, the solution will not be generic but depends on the current values of the
server parameters. To avoid both problems, we propose to learn the statistics of the
ball motion directly from experiments, and to compute the required probabilities from
these statistics.
We estimated the cumulative noise added to the ball perpendicular to the shooting

direction as a function of the travelled distance d along this direction. This function was
learned by repeating an experiment in which a player was placed at various distances
in front of the center of the goal (zero y-coordinate) and shot the ball 1000 times from
each distance perpendicularly to the goal line. For each instance we recorded the y-
coordinate of the point where the ball entered the goal. We empirically found that, to a
good approximation, the standard deviation σ of the ball perpendicular to the shooting
direction was given by a monotone increasing function

σ(d) = −1.88 ∗ ln(1− d/45) (1)

with ln(·) the natural logarithm. Moreover, the Central Limit Theorem [2] indicates that
the ball distribution along the goal line will be approximately Gaussian with zero mean
and standard deviation σ(d) from (1), as shown in Fig. 1(a). The scoring probability
is then given by the area of the Gaussian density between the two goalposts.
When the ball is shot at an angle to the goal, the ball can travel different distances

(implying different deviations) before it reaches the goal line, causing the distribution
along the goal line to be non-Gaussian. The key observation is that we want to compute
probability masses and for equal masses the particular shape of the distribution that
gives rise to these masses is irrelevant. Therefore, instead of computing the distribution
of the ball along the goal line analytically (by solving the constrained diffusion process
equations) and then integrating to find its probability mass between the two goalposts,
we compute the probability mass from the identity

P{goal} = 1− P{not goal} = 1− P{out from left} − P{out from right} (2)

where P{not goal} denotes the probability that the ball will miss the goal, going out
from the left or the right goalpost. This probability mass is easier to compute from the
tails of the Gaussian distributions corresponding to the two goalposts.

1The ball velocity vector (vt+1
x , vt+1

y ) in cycle t+1 is equal to 0.94 ∗ (vt
x, vt

y) + (r̃1, r̃2) where r̃1 and

r̃2 are random numbers uniformly distributed in [-rmax, rmax], with rmax = 0.05 ∗ ||(vt
x, vt

y)||.
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Figure 1: Two situations of shooting to the goal (light gray) together with the associated
probability distributions. (a) Shooting perpendicularly. (b) Shooting at an angle.

This is shown in Figure 1(b). For example, when the ball reaches the left post, it
has effectively travelled distance ll and its distribution perpendicular to the shooting
line is Gaussian with deviation σ(ll) from (1). The probability that the ball will go out
from the left goalpost is approximately2 equal to the shaded area on the left. Thus

P{out from left} ≈ 1

σ(ll)
√
2π

∫

−dl

−∞

exp

[

− y2

2σ2(ll)

]

dy (3)

where dl is the shortest distance from the left goalpost to the shooting line. The
situation that the ball will go out from the right post is analogous. The only difference
is that the ball will have to travel a larger distance, which will make its deviation
larger and the corresponding Gaussian flatter. Finally, using (2) we can determine the
probability that the ball will enter the goal.

2.2 Subproblem 2: Probability of Passing the Goalkeeper

The second subproblem can be stated as follows: given a shooting point in the goal,
determine the probability that the goalkeeper intercepts the ball before it reaches the
goal line. In our experiments we used the goalkeeper of Robocup-2000 winner FC
Portugal, since it appeared to be one of the best available goalkeepers. Due to lack of
space we only briefly describe the proposed method, and refer for details to [1].
The main observation is that ball interception can be regarded as a two-class clas-

sification problem: given the player and goalkeeper position (input feature vector),
predict which class (intercepting or not) is most probable. Moreover, we are interested
in the posterior probability associated with the prediction of each class. Formalizing
the problem in this way allows for direct application of a variety of methods from the
field of statistical pattern recognition [3].
To collect a training set, we performed an experiment in which a player repeatedly

shot the ball from a fixed position straight to the goal, while the goalkeeper was placed
randomly at different positions relative to the player. A data set was formed by record-
ing 10.000 situations, together with a boolean indicating whether the goalkeeper had

2We neglect the probability that the ball will end up to the right of the left goalpost after having
travelled an ‘illegal’ trajectory outside the field.
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Figure 2: (a) Data set and discriminant function. (b) 1-d class histograms.

intercepted the ball or not. The relevant features for classification turned out to be (i)
the absolute angle between the goalkeeper and the shooting point in the goal as seen
by the player, and (ii) the distance between the player and the goalkeeper. These two
values formed a two-dimensional feature vector on which the classification was based.
The recorded data set is shown in Figure 2(a) where we note that there is an almost

linear discriminant function between the two classes. We determined this discriminant
via regression on the class indicator boolean variable, a procedure which is known to
give the optimal Fisher’s linear discriminant [3, Ch. 3.2]. Projecting all data points
perpendicularly to the discriminant line, we get a set of one-dimensional points ui that
describe, to a good approximation, the two classes. The histogram class distributions
of these points are plotted in Figure 2(b). Then, we fit a univariate Gaussian function
p(u|C) on each class C in the overlapping region, from which we can compute the
posterior probability for this class using the Bayes rule, which approximately gives the
required posterior P(pass goalkeeper |u) as a simple sigmoid function [1].

2.3 Determining the Best Scoring Point

Having computed the probability that the ball will end up inside the goal (subprob-
lem 1) and the probability that the goalkeeper will not intercept it (subproblem 2),
the assumption of independence gives the total probability as the product of these two
probabilities. This total probability is a bell-shaped function, representing the probabil-
ity that the ball will enter the goal, with a valley around the position of the goalkeeper.
The curve will have only two local maxima, corresponding to the left and the right
starting point of the valley, which can be located with a simple hill-climbing algorithm.
The global maximizer of this function is selected as the best shooting point.
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