X

X

X

UNIVERSITEIT
VAN
AMSTERDAM

IAS technical report IAS-UVA-03-03

The Pursuit Domain Package

Jelle R. Kok and Nikos Vlassis
Informatics Institute

Faculty of Science

University of Amsterdam

The Netherlands

The pursuit (or Predator/Prey) domain is a widely used environment to test
single or multiagent systems techniques. It consists of a grid world in which two
types of agents, predators and prey, move around. It is the goal of the predators
to capture the prey as quickly as possible.

This report describes our ‘pursuit’ software package, which can be used to
implement and test the predator behavior in several scenarios without having to
worry about other details involved in this domain.

We describe the following programs, which are all provided with the pack-
age: pursuit (main program), pursuit_monitor (visualization), pursuit_logplayer
(playback tool) and the agent skeletons.

[AS

intelligent|autonomous systems

The Pursuit Domain Package

Contents

Contents

‘1 Introduction

‘2 Working with the Pursuit Domain

2.1 Starting the environment
2.2 Starting the agents
2.3 Implementing the agents
2.4 Starting the logplayer
2.5 Startscript
‘3 Pursuit Server‘
31 World
3.2 Episode and cycles‘
3.3 Agent Protocols.
3.3.1 Initialization
3.3.2 Sensory information‘
3.3.3 Movement commands
3.3.4 Communication commands‘
3.3.5 Referee commands
‘4 Monitor

‘4.1 Monitor Protocols
4.1.1 Initialization

4.1.2 Server Parameters
4.1.3 World Information

4.1.4 User interaction

5 Logplayer

‘6 Conclusion

‘A Configuration parameters

Y

ENEEN iife)N o> NG B e2 SITSGTN R W W NN

o 0o 00 N I

10

Intelligent Autonomous Systems

Informatics Institute, Faculty of Science

University of Amsterdam
Kruislaan 403, 1098 SJ Amsterdam
The Netherlands

Tel (fax): +31 20 525 7461 (7490)

http://www.science.uva.nl/research/ias/

Corresponding author:

Jelle R. Kok
tel: +31 20 525 7524

jellekok@science.uva.nl

http://www.science.uva.nl/~jellekok/

Copyright IAS, 2003

http://www.science.uva.nl/research/ias/
jellekok@science.uva.nl
http://www.science.uva.nl/~jellekok/

Section 1 Introduction 1

1 Introduction

The pursuit (or Predator/Prey) domain was introduced in [Benda et al., 1986] and has become
a widely used testbed for single and multiagent systems techniques. The pursuit domain consists
of a discrete, grid world in which two types of agents move around: predators and preys. Figure
[1 shows an example of a 10 x 10 world with two predators and two preys. In this world, it is the
goal of the predators to capture all prey. In most cases, this domain has been studied with four
predators and one prey, the latter moving randomly to one of its adjacent cells and standing
still with a predefined probability such that the predators are able to catch up.

A

y

A A

prey

predator

»

X

Figure 1: Graphical view of the world with two predators and two preys. The blue cells resemble
the visible range of the predators.

Several variations of the original description have been studied over the years [Tan, 1993,
Haynes and Sen, 1995, Korf, 1992]. We discuss the most important parameters related to these
variations (parameters taken from [Stone and Veloso, 2000]).

Capture condition In its original setting, a prey is captured when all its adjacent cells are
occupied by predators. Other possible capture criteria are surrounding the prey with two
predators or occupying the same cell as a prey.

Visible range This denotes the number of cells from which a predator receives sensory in-
formation. Preys and predators that are outside this range are not visible.

Communication An important variation is whether the predators are allowed to communi-
cate with each other and in this way be able to inform other predators of their strategies
or sensory findings.

Legal moves Originally, an agent was only allowed to move to adjacent cells. A possible
variation is to also include diagonal movements.

Grid-size The size of the world can be changed to different sizes. Furthermore, the world
can be made planar (with borders on all edges) or toroidal. In the latter case the agents
can directly move from one side of the grid to the other side.

2 The Pursuit Domain Package

Simultaneous or sequential movement This variation indicates whether the agents move
at the same time or one after the other.

Prey movement In most variations the prey move randomly. Other variations would allow
the prey to be more sophisticated and actively try to escape capturing.

For the practical of the course ‘Multiagent Systems and Distributed AI’m, the pursuit domain
package has been used since spring 2001. In this package, we have parameterized many of the
mentioned variations above, which makes it possible to easily change the characteristics of the
domain.

The remainder of this report describes this package. We start in Section 2 with a short
overview of the different components and descriptions of their usages. Thereafter, we describe
the individual components in more detail. Section 3|describes the server details and the client
protocols, Section [4 discusses the monitor that is used to display the world. Section [5 gives a
description of the logplayer which allows for replay of recorded games. Finally, we end with a
conclusion in Section [6.

2 Working with the Pursuit Domain

The pursuit packageﬁ consists of the following components:

Pursuit server This is the core program of the package. It models the complete environment
and handles the connections with the client programs.

Monitor The monitor can be used to display the current world state of the pursuit server.
After a monitor is started, it creates a connection with the server and then starts to receive
information about the current world state. The monitor visualizes this information.

Agents The agents (both predators and prey) also create a connection with the server and
then start to receive sensory information. Furthermore, they can sent actuator commands
to the server, which causes the world to be updated accordingly.

Logplayer If the related option is turned on, the pursuit server logs all the subsequent world
states to a file. The logplayer can be used to replay the contents of this file. A monitor is
needed to visualize the current contents of the logplayer.

The remainder of this Section explains how to work with the mentioned components and
how to create your own client programs.

2.1 Starting the environment

The pursuit server is the core program of the package; it models the complete world and handles
communication with its connected clients. It can be started with a single command: pursuit.
When started, it waits for client programs to make a connection. The pursuit server has no
graphical interface, so to visualize the current state of the world, a monitor has to be started.
This can be done with the pursuit monitor command. The grid is then displayed without any
predators or prey.

'More information about this course, can be found at http://www.science.uva.nl/~vlassis/teaching/
2This package is open source and can be downloaded from http://www.science.uva.nl/~jellekok/software.
See accompanied files for installation details.

http://www.science.uva.nl/~vlassis/teaching/
http://www.science.uva.nl/~jellekok/software

Section 2 Working with the Pursuit Domain 3

{Client structure}
continue = true

while continue == true do
receive message from server
if message == (quit) then

continue = false
else if message starts with (see then
processVisualInformation()
if determineCommunicationCommand() is not the empty string then
send communication message
end if
else if message starts with (hear then
processCommunicationInformation()
else if message starts with (send_action then
determineMovementCommand ()
send movement command to the server
end if
end while

Algorithm 1: The client structure that shows the response to the different server messages.

2.2 Starting the agents

The agents (either predators or preys) can be started by connecting them to the server process.
A skeleton implementation is available for both a predator and prey agent. It takes care of all
communication with the server and defines several callbacks functions in which the behavior of
the agent can be defined. A predator is started with the command predator and a prey is
started with the prey command. It is also possible to start multiple predators or prey; the only
limit in the number of agents is the size of the grid.

After these programs are started, the corresponding agents appear on the monitor grid
(predators are displayed as blue circles, prey as red triangles). Now a game can be started by
pressing either the ‘c’ button or selecting the ‘Continue’ option from the mouse menu which
appears when the mouse is clicked somewhere in the monitor. The predators and prey now start
to move according to their defined behavior. The pursuit server automatically detects when a
prey has been caught and will remove him from the grid. When all prey have been caught, the
server gathers the statistics from this episode, places all prey and predators randomly on the
grid and starts a new episode.

2.3 Implementing the agents

Each agent receives sensory information about its environment (relative position information to
the other agents), can perform actions to move around in the world, and can communicate with
other agents to coordinate its actions. The order in which this happens is fixed and is displayed
in the basic structure of the client implementation in Algorithm|1. For more information about
the protocol used between the server and the client agents, see Section 3|

Different callback methods are defined in this simple agent that have to be implemented in
order to specify the behavior of the agents:

e processVisualInformation. This method is called with the received visual information
as an argument. This string contains all relative position information of visible prey and

3 The skeleton clients are available in C4++, Java and Python but other programming languages can also be
used as long as they support socket communication.

4 The Pursuit Domain Package

predators. By default this method only parses the incoming string and prints the position
information of all visible agents to the screen. It can be used to create a model of the
world as seen by this agent.

e determineMovementCommand. This method is used to specify the next movement command
for this agent. The created command is then sent to the server. By default, this method
returns a random movement command.

e determineCommunicationCommand. This method is only called when it is allowed to com-
municate with the other agents. In case the returned string is non-empty, it is sent to the
server, which broadcasts it to all other agents when the communication option is turned
on. The only restriction that applies to the communicated string is its length of maximum
256 characters.

e processCommunicationInformation. This method is called when a communication mes-
sage arrives from another agent.

2.4 Starting the logplayer

When the corresponding option is turned on, the pursuit server stores the information about
the current game into an output file. The logplayer can be started with the logged file as an
argument, i.e., logplayer game.log. This starts a small window with some standard playback
tools (play, rewind, forward, stop and jump to a specific cycle in an episode), which can be
used to cycle through the recorded game. In order to visualize the contents of the logplayer, a
separate graphical interface has to be started. This can be done by starting a monitor in exactly
the same way as during a normal game.

2.5 Start script

A start script, start.sh, is provided that starts all relevant programs at once. By default, it
starts the pursuit server, a monitor and four agents (two predators and two prey). It can be
extended easily to start a different number of agents..

3 Pursuit Server

The pursuit server is the core of the package. It maintains the current world state and handles
all communication with the agents. This section first describes how the server represents the
world, how time is discretized in episodes and cycles, and finally discusses the agent protocols.
The latter are used to handle the communication between the server and the clients. The server
uses the protocol to provide the agents with information about their surroundings and the clients
use it to inform the server of their intended action.

3.1 World

The world consists of a grid of x y cells. Each cell has a distinct position denoted by its x-
and y-coordinate. The cell in the lower left corner is labeled (0,0). The x-axis is the horizontal
axis and the y-axis is the vertical axis. The upper right corner is thus labeled with the position
(+x,+y). Agents can move around in the world to adjacent cells. The world is toroidal, meaning
that the agents can move from one end of the grid directly to the other side of the grid.

The server processes the incoming actuator commands of the clients to update their positions
on the field. The resulting state is then checked for the following special cases:

Section 3 Pursuit Server 5

Prey caught When a prey is caught according to the specified capture condition, the prey
is removed from the world. We have predefined the following four capture criteria:

e A predator and a prey share the same cell.

e A prey is surrounded by four predators. The predators are thus located north, south,
east and west of the prey.

e A prey is surrounded by two predators. Thus two predators occupy two of the four
surrounding cells of the prey.

e In the previous turn two predators were surrounding the prey, but only one moved
to the location of the prey.

When a prey is caught, it is removed from the world.

Collision When two agents of the same type share the same cell, a collision occurs. In case
of a collision both agents are penalized and placed at random positions on the field. In
case of a collision between predators, both agents are colored differently for one cycle.

Penalty When a predator moves to the location of the prey while this is not allowed according
to the capture criteria, the predator is penalized and placed on a random position on the
field. Note that this case only holds for the fourth and last capture condition in which an
agent moves to the location of the prey while in the previous turn he was not surrounding
the prey together with another predator.

When all preys are captured an episode is ended and the number of cycles are recorded. All
prey and predators are placed at random positions again and a new episode starts.

3.2 Episode and cycles

Time is divided into cycles. Each cycle consists of different stages in which either the prey
or the predators are allowed to communicate with the server. Algorithm 2|displays all stages
that the server uses. At the beginning of a cycle, visual messages are communicated to all
prey after which the prey have time_step ms? to send a communication message to the server
which is subsequently broadcasted to all other preyﬁ . After this period has elapsed, the server
communicates the (send_action episode nr cycle nr) message to the prey to indicate that
the communication period is over and they now can send their movement command to the server.
When again time_step ms have elapsed the sending period is over and the prey on the field are
updated according to the received movement commands. Now it is the turn of the predators
and the whole procedure repeats itself. The predators thus move simultaneously after the preys
have moved simultaneously.

3.3 Agent Protocols

Each agent is controlled by a separate computer process. This client process creates a (socket)
connection with the server. After the connection is created the server waits for an initialization
message from the client. After this message is received, the agent starts to receive sensory
information from the server and can send movement and communication messages that are
executed by the server. All these messages have to obey a strict protocol, which is discussed
next.

When time_step is defined as —1 the server immediately continues when all agent messages are received. Use
this value when a large amount of episodes have to be performed (i.e. for learning tasks).
®Note that when communication is turned off, this stage is skipped.

6 The Pursuit Domain Package

while not all preys are captured do
{cycle}
send visual information to all preys
wait time_step ms to receive and process communication messages from prey
send message (send_action episodenr cyclenr) to all prey
wait time_step ms to receive movement commands prey
update field
check collisions
send visual information to all predators
wait time_step ms to receive communication messages from predators
send message (send_action episode nr cycle.nr) to all predators
wait time_step ms to receive movement commands predators
update field
check collisions
check whether a prey is captured
end while

Algorithm 2: Description of the different stages of the server during one cycle.

3.3.1 Initialization

After the socket connection is created, the agent can send an initialization message in the
following format:

(init prey|predator)

The argument specifies whether this process represents a prey or predator agent. After a
correct initialization message the server returns the message (init ok) and thereafter it starts
sending sensory information and handle incoming messages. In case of an incorrect message,
the server will not reply.

3.3.2 Sensory information

After initialization, an agent receives sensory information about the other objects in the world.
This information has the following format

(seel obj_infol*)
with
obj_info: (preylpredator x y)

The x and y value represent the relative distance in x and y direction respectively. In Figure[l
the predator located at position (3,6) receives the visual message (see (predator 4 3) (prey
4 1) (prey -3 -3)) in case the world is fully observable. Objects are only located in the visual
message when the relative distance to this object is smaller or equal than the distance defined in
the visible distance option (see Appendix|/A). With the default value of 2 for this parameter,
the predator would observe no other agents and would therefore receive the message (see). The
value -1 corresponds to a fully observable world.

3.3.3 Movement commands

Agent can influence their environment by sending movement commands to the server. The server
updates the positions of the agents by executing the received action. Movement commands have
the following format

Section 4 Monitor 7

(move north | south | east | west |
northeast | northwest | southeast | southwest |
none)

The single argument specifies the direction in which the agent wants to move or none in case
the agent wants to remain at his current location. In the default case, the diagonal movement
commands are ignored and the agents can only move north, south, east, west or stand still.

3.3.4 Communication commands

If communication is turned on, agents can communicate with each other. A message should be
sent to the server who broadcasts this message to all other agents. The communication message
should be sent to the server in the following format:

(say string)

where string is a sequence of ASCII characters (maximum of 256 characters). The other
agents immediately receive this message in the following format:

(hear string)

3.3.5 Referee commands

In special situations the ‘referee’ sends specific messages to the agents. This happens in the
following situations:

e Episode has ended. The message (referee episode_ended) is sent to all agents.
e Two agents collide. The message (referee collision) is sent to the collided agents.

e A predator occupies the same cell as a prey, while the capture condition is violated. In
this case, the message (referee penalize) is sent to the penalized predator.

4 Monitor

The monitor displays the current situation of the world and some statistics (episode and cycle
number, average capture time and the total number of collisions and penalties). The monitor is
a separate program that also makes a (socket) connection with the server. After each update,
the server sends the information of all the agents and the statistics to the monitor. The monitor
displays this graphically as is depicted in Figure[L.

4.1 Monitor Protocols

The monitor receives messages from the server that contain information about the world, but
can also send commands that influence the server behavior. The syntax of these messages are
explained next.

4.1.1 Initialization

After the socket connection is created, the monitor has to send the following initialization
message:

(init monitor)

When this command is received by the server, it returns (init ok). This message is imme-
diately followed by the server parameter message.

8 The Pursuit Domain Package

4.1.2 Server Parameters

The server parameters which are also important for the monitor are communicated directly after
the initialization confirmation. This message has the following format:

(server_param (visible_distance x) (rows r) (columns c))

where x, r and c represent the values from the corresponding server parameters.

4.1.3 World Information

The message that gives all information about the current world information has the following
format:

(world (stats epis_nr cycle_nr avg_capture_time pen_nr coll_nr)
[((preylpredator nc) x y)]*)

The variables following stats resemble respectively the episode and cycle number, average
capture time and the total number of penalizations and collisions. n is the number of this agent
and c specifies the curent state of this agent (either ¢ ’ in the default case, c in case of a collision
and x in case of a captured prey).

4.1.4 User interaction

It is possible for the monitor to send commands to the server that influence the game. These
commands are initiated by pressing specific buttons on the keyboard or selecting the item from
the mouse menu which appears when the user clicks somewhere in the monitor. The different
messages have the following format:

e (monitor continue). Start/Resume playing. Select the ‘Continue’ option from the mouse
menu or press the ‘¢’ button.

e (monitor pause). Pause the game. Select the ‘Pause’ option from the mouse menu or
press the ‘p’ button.

e (monitor quit). Quit the server. Select the ‘Quit’ option from the mouse menu or press
the ‘q’ button.

e (monitor step). Switch to step-by-step play. This means that the server advances one
cycle and then waits for the next call to step-by-step. Select the ‘Step-by-step’ option from
the mouse menu or press the ‘s’ button.

e (monitor speed_up). This option decreases the time waited before advancing to the next
cycle with 10 ms (but not lower than 20 ms). This message is sent after the ‘+’ button is
pressed.

e (monitor speed_down). This option increases the time waited before advancing to the
next cycle with 10 ms. This message is sent after the ‘-’ button is pressed.

Section 5 Logplayer 9

5 Logplayer

The logplayer plays back logged games. When the server is started with the log option turned
on, a human readable file is created that contains the received commands from the clients and
the complete world information from each cycle. The logplayer parses this file and stores the
relevant information internally. Furthermore, it provides an interface with the following control
options:

play The logplayer cycles forward through all stored frames.

step The logplayer moves forward to the next frame and stops.

play backward The logplayer cycles backward through all stored frames.

step backward The logplayer moves backward to the previous frame and stops.
stop The logplayer stops playing and waits for another action..

jump The logplayer jumps to the specified episode, cycle number.

The logplayer sends the world information from the current displayed frame in the same format
as the server to all connected monitors.

6 Conclusion

We have described the pursuit package which has been successfully used for the course ‘Mul-
tiagent Systems and Distributed AI’ at the University of Amsterdam since spring 2001. This
software is an implementation of the pursuit (also called predator/prey) domain. Many as-
pects of the package are configurable, which makes it possible to test different variations of the
problem.

References

[Benda et al., 1986] Benda, M., Jagannathan, V., and Dodhiawala, R. (1986). On optimal coop-
eration of knowledge sources - an experimental investigation. Technical Report BCS-G2010-
280, Boeing Advanced Technology Center, Boeing Computing Services, Seattle, Washington.

[Haynes and Sen, 1995] Haynes, T. and Sen, S. (1995). Evolving behavioral strategies in preda-
tors and prey. In Sen, S., editor, IJCAI-95 Workshop on Adaptation and Learning in Multi-
agent Systems, pages 32-37, Montreal, Quebec, Canada. Morgan Kaufmann.

[Korf, 1992] Korf, R. (1992). A simple solution to pursuit games. In Working Papers of the
Eleventh International Workshop on DAI pages 195-213, Geneva, Switzerland.

[Stone and Veloso, 2000] Stone, P. and Veloso, M. (2000). Multi-Agent Systems: A Survey from
a Machine Learning Perspective. Autonomous Robotics, 8(3).

[Tan, 1993] Tan, M. (1993). Multi-agent reinforcement learning: Independent vs. cooperative
agents. In Proceedings of the 10th International Conference on Machine Learning, pages 426
—431.

10 The Pursuit Domain Package

A Configuration parameters

The server and the monitor can be configured using different parameters. Table [1] and Table [2
list all the configurable parameters for the server and the monitor respectively. The different
configuration parameters can be passed to the server using a configuration file (for example
pursuit.conf or monitor.conf). Provide the location of this file as an argument (-conf
conf_file) when the program is started:

‘ option ‘ default ‘ description ‘
columns 15 number of columns
TOWS 15 number of rows
port 4001 connection port on server machine
time_step 100 time in ms for a phase in a cycle
nr_episodes 50 number of episodes before program halts
next_episode_wait 1000 time in ms waited after an episode
visible_distance 2 defines how far agents can see, -1 is fully observable
allow_comm false whether to allow communication
allow_diagonal _prey false is prey allowed to move diagonal
allow_diagonal _pred false is predator allowed to move diagonal
log_obj_info true indicates whether to log position info
log_obj_file game.log | output file log info
automatic_start false start server automatically (delay 10s)
output_file stdout | file to write episode times to
capture_method 1 method to capture prey (see earlier)
penalize_all 0 penalize all or only involved agents

Table 1: Server parameters

‘ option ‘ default ‘ description
window_height 400 height of the window in pixels
window_width 400 width of the window in pixels
host localhost | host on which server is running
port 4001 connection port on server machine
show_number false display agents’ numbers
show_visible_range true display agents’ visible range
background_color fHtt hexadecimal value of background color
grid_color 000000 | hexadecimal value of grid color
prey_color ff6633 | hexadecimal value of prey color
predator_color 33ccff | hexadecimal value of predator color
caught_color cc6633 | hexadecimal value of caught prey color
collision_color 66ccee | hexadecimal value of collided pred. color

Table 2: Monitor parameters

IAS reports

This report is in the series of IAS technical reports. The series editor is Stephan
ten Hagen (stephanh@science.uva.nl). Within this series the following titles
appeared:

Joris Portegies Zwart, Ben Krose, and Sjoerd Gelsema. Aircraft Classification
from Estimated Models of Radar Scattering. Technical Report IAS-UVA-03-02,
Informatics Institute, University of Amsterdam, The Netherlands, January 2003.

Joris Portegies Zwart, René van der Heiden, Sjoerd Gelsema, and Frans Groen.
Fast Translation Invariant Classification of HRR Range Profiles in a Zero Phase
Representation. Technical Report TAS-UVA-03-01, Informatics Institute, Uni-
versity of Amsterdam, The Netherlands, January 2003.

M.D. Zaharia, L. Dorst, and T.A. Bouma. The interface specification and im-
plementation internals of a program. module for geometric algebra. Technical
Report TAS-UVA-02-06, Informatics Institute, University of Amsterdam, The
Netherlands, December 2002.

M.D. Zaharia. Computer graphics from a geometric algebra perspective. Technical
Report TAS-UVA-02-05, Informatics Institute, University of Amsterdam, The
Netherlands, August 2002.

J.R. Kok and N. Vlassis. Mututal modeling of teammate behavior. Technical
Report TAS-UVA-02-04, Informatics Institute, University of Amsterdam, The
Netherlands, August 2002.

J.J. Verbeek, N. Vlassis, and B. Krose. The Generative Self-Organizing Map:
A Probabilistic Generalization of Kohonen’s SOM. Technical Report IAS-UVA-
02-03, Informatics Institute, University of Amsterdam, The Netherlands, May
2002.

All TAS technical reports are available for download at the TAS website,
http://www.science.uva.nl/research/ias/publications/reports/.

stephanh@science.uva.nl
http://www.science.uva.nl/research/ias/publications/reports/

	Introduction
	Working with the Pursuit Domain
	Starting the environment
	Starting the agents
	Implementing the agents
	Starting the logplayer
	Start script

	Pursuit Server
	World
	Episode and cycles
	Agent Protocols
	Initialization
	Sensory information
	Movement commands
	Communication commands
	Referee commands

	Monitor
	Monitor Protocols
	Initialization
	Server Parameters
	World Information
	User interaction

	Logplayer
	Conclusion
	Configuration parameters

