
Distributed decision making of robotic agents

Jelle R. Kok Nikos Vlassis

Informatics Institute, Faculty of Science, University of Amsterdam
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

{jellekok,vlassis}@science.uva.nl

Keywords: Multiagent systems, distributed decision making, coordination, robot soccer

Abstract

In order to make a distributed decision in a
group of agents, each agent has to take into ac-
count the actions of the agents on which it de-
pends. In a dynamic environment, these depen-
dencies may change rapidly as a result of the con-
tinuously changing state. Coordination graphs
offer a scalable solution to the problem of multi-
agent coordination by decomposing the problem
into smaller subproblems. In this paper, we show
how coordination graphs can be applied to dy-
namic and continuous domains by assigning roles
to the agents and then coordinating the different
roles. Moreover, we show how an agent can pre-
dict the action of the other agents, making com-
munication unnecessary. Finally, we will demon-
strate this method on the RoboCup soccer simu-
lation domain.

1 Introduction

A distributed system is defined as a collec-
tion of independent computers that appear to the
users of the system as a single computer [10]. To
accomplish this, the distributed computers trans-
parently distribute the resources among the dif-
ferent machines using a shared communication
protocol and hide all irrelevant system-dependent
details from the user. One of the most funda-
mental problems in this domain is to reach con-
sensus among the different agents, for example,
whether the different components in a distributed
database system either all commit or all abort a
transaction.
Multiagent systems (MAS) can be regarded as

specialized distributed systems consisting of a col-
lection of agents1 that coexist in an environment,

1We define an agent as anything that can be viewed
as perceiving its environment through sensors and acting
upon that environment through actuators [8]. This defini-

interact (explicitly or implicitly) with each other,
and try to optimize a performance measure. Re-
search in MAS focuses on behavior management
issues (e.g. coordination of behaviors) in such sys-
tems. Although the individual capabilities of an
agent in MAS are often less complex than in dis-
tributed systems, the overall (complex) behavior
of the system is derived from the interaction of
the different agents. These agents could not only
have entirely different designs, but also their own
set of actions and their own (possible conflicting)
interests and goals.
In our case, we are interested in fully cooper-

ative MAS in which all agents share a common
goal. A key aspect in such systems is the prob-
lem of coordination: how do the individual agents
reach consensus about the joint action to take in
order to successfully achieve the common goal.
In principle game theoretic techniques can be

applied to solve the coordination problem [7].
The difficulty with this approach is that the joint
action space is exponential in the number of
agents. For practical situations, involving many
agents, modeling an n-person game therefore be-
comes intractable. However, the particular struc-
ture of the coordination problem can often be ex-
ploited to reduce its complexity.
A recent approach involves the use of a coordi-

nation graph (CG) [4]. In this graph, each node
represents an agent, and edges between nodes in-
dicate that the corresponding agents have to coor-
dinate their actions. In a context-specific CG [5]
the topology of the graph is dynamically updated
based on the current context.
In this paper we describe a framework for dis-

tributed decision making in dynamic and contin-
uous domains using coordination graphs. We as-
sume a group of robotic agents that are embed-
ded in a continuous domain and are able to per-

tion applies to humans, robotic agents, but also to software
agents.



ceive their surroundings with sensors. In order
to apply the coordination graph algorithm, we
appropriately ‘discretize’ the continuous state by
assigning roles to the agents [9] and then, instead
of coordinating the different agents, coordinate
the different roles. Furthermore, we will describe
a method that allows an agent to efficiently pre-
dict the optimal action of its neighboring agents,
making communication unnecessary. Finally, we
work out an extensive example that applies coor-
dination graphs to robot soccer.

The setup of the paper is as follows. In Sec-
tion 2 we review the coordination problem from
a game-theoretic point of view, and in Section 3
we explain the concept of a coordination graph.
In Section 4 we describe our framework to co-
ordinate agents in a continuous dynamic envi-
ronment using roles and without using commu-
nication. These two methods are applied to the
RoboCup soccer simulation domain in Section 5.
Finally, we give our conclusions and discuss pos-
sible further extensions in Section 6.

2 The coordination problem

In order to place the coordination problem in
a broader context, we first review it from a game
theoretic point of view. A strategic game [7]
is a tuple (n,A1..n, R1..n) where n is the num-
ber of agents, Ai is the set of actions of agent i

and Ri is the payoff function for agent i. This
payoff function maps the selected joint action
A = A1 × ... × An to a real value: Ri(A) → IR.
Each agent selects an action from its action set,
and then receives a payoff based on the actions
selected by all agents. The goal of the agents
is to select, via their individual decisions, the
most profitable joint action. In the remainder of
this paper, we are interested in fully cooperative
strategic games, so-called coordination games, in
which all agents share the same payoff function
R1 = . . . = Rn = R.

A Nash equilibrium defines a joint action a∗ ∈
A with the property that for every agent i holds
Ri(a

∗

i , a
∗

−i) ≥ Ri(ai, a
∗

−i) for all ai ∈ Ai, where
a−i is the joint action for all agents excluding
agent i. Such an equilibrium joint action is a
steady state from which no agent can profitably
deviate given the actions of the other agents. For-
mally, the coordination problem can be seen as
the problem of selecting one out of many Nash
equilibria in a coordination game.

Several different methods exist to solve a coor-
dination game, for example by using communica-
tion, learning, or by imposing social conventions
[1]. In these cases it is assumed that the Nash
equilibria can be found and coordination is then

PSfrag replacements

A1

A2 A3

A4

Figure 1: An example coordination graph for a
4-agent problem.

the problem of agreeing on a single equilibrium.
However, the number of joint actions grows ex-
ponentially with the number of agents, making it
infeasible to determine all equilibria in the case
of many agents. This calls for methods that first
reduce the action space before solving the coor-
dination problem. One such approach, explained
next, is based on the use of a coordination graph
that captures local coordination requirements be-
tween agents.

3 Coordination graphs

A coordination graph (CG) represents the co-
ordination requirements of a system [4]. A node
in the graph represents an agent, while an edge
in the graph defines a (possibly directed) depen-
dency between two agents. Only interconnected
agents have to coordinate their actions at any par-
ticular instance. Figure 1 shows a possible CG
for a 4-agent problem. In this example, A2 has
to coordinate with A1, A4 has to coordinate with
A3, A3 has to coordinate with both A4 and A1,
and A1 has to coordinate with both A2 and A3.
The key idea of CGs is that when the global pay-
off function can be decomposed as a sum of local
payoff functions, the global coordination problem
can be replaced by a number of easier local coor-
dination problems. The agents can then find the
joint optimal action by using an efficient variable
elimination algorithm in combination with a mes-
sage passing scheme [4].
The algorithm assumes that each agent knows

its neighbors in the graph (but not necessar-
ily their payoff function which might depend on
other agents). Each agent is ‘eliminated’ from
the graph by solving a local optimization problem
that involves only this agent and its neighbors:
the agent collects from its neighbors all relevant
payoff functions, then optimizes its decision con-
ditionally on its neighbors’ decisions, and commu-
nicates the resulting ‘conditional’ payoff function
back to its neighbors. A next agent is selected
and the process continues. When all agents have
been eliminated, each agent communicates its de-
cision to its neighbors in the reverse elimination



PSfrag replacements

A1 A1

A2A2 A3A3

A4 A4

A1 〈a1 ∧ a3 ∧ x : 4〉
〈a1 ∧ a2 ∧ x : 5〉

A2 〈a2 ∧ x : 2〉
A3 〈a3 ∧ a2 ∧ x : 5〉
A4 〈a3 ∧ a4 ∧ x : 10〉

〈a1 ∧ a3 : 4〉
〈a1 ∧ a2 : 5〉
〈a2 : 2〉
〈a3 ∧ a2 : 5〉

Figure 2: Initial coordination graph (left) and
graph after conditioning on the context x = true

(right).

order in order for them to fix their strategy.
The local payoff functions can be matrix-

based [4] or rule-based [5]. In the latter case
the payoff rules are defined using ‘value rules’,
which specify how an agent’s payoff depends on
the current context. The context being defined as
a propositional rule over the state variables and
the actions of the agent’s neighbors. These rules
can be regarded as a sparse representation of the
complete payoff matrices.
As an example, consider the case where two

persons have to coordinate their actions to enter
a narrow door. We can describe this situation
using the following value rule:

〈p1 ; in-front-of-same-door(A1, A2) ∧

a1 = enterDoor ∧

a2 = enterDoor : −50〉

This rule indicates that when the two agents
are located in front of the same door and both
select the same action (entering the door), the
global payoff value will be reduced by 50. When
the state is not consistent with the above rule (the
agents are not located in front of the same door),
the rule does not apply and the agents do not
have to coordinate their actions. By conditioning
on the current state the agents can discard all
irrelevant rules, and as a consequence the CG is
dynamically updated and simplified. Each agent
thus only needs to observe that part of the state
mentioned in its value rules.
For a more extensive example, see Figure 2.

Beneath the left graph we list all value rules (de-
fined over binary action and context variables)
together with the agent the rule applies to. The
coordination dependencies between the agents are
represented by directed edges, where each (child)
agent has an incoming edge from the (parent)

agent that affects its decision. After the agents
observe the current state, x = true, the last rule
does not apply anymore and can be removed. As
a consequence, the optimal joint action is inde-
pendent of the action of A4 and the edges to A4

can be deleted from the graph as is shown in the
right graph of Figure 2.

After the agents have conditioned on the state
variables, the agents are one by one eliminated
from the graph. Let us assume that we first
eliminate A3 in the above example. After col-
lecting from its neighbors all rules that involve
A3, A3 has to maximize over the rules 〈a1 ∧ a3 :
4〉〈a3 ∧ a2 : 5〉. For all possible actions of A1

and A2, A3 determines its best response and then
distributes this conditional strategy, in this case
equal to 〈a2 : 5〉〈a1∧a2 : 4〉, to its parent A2. Af-
ter this step, A3 has no children in the coordina-
tion graph anymore and can be eliminated. The
procedure then continues and after A2 has dis-
tributed its conditional strategy 〈a1 : 11〉〈a1 : 5〉
to A1, A2 is also eliminated. Finally, A1 is the last
agent left and fixes its action to a1. Now a sec-
ond pass in the reverse order is performed, where
each agent distributes its strategy to its neigh-
bors, who can then determine their final strategy.
In this case, this will result in the optimal joint ac-
tion, {a1, a2, a3} and a corresponding global pay-
off of 11.

It is not difficult to see that the outcome of
this algorithm is independent of the elimination
order and the distribution of the rules, and will
always result in an optimal joint action.

A limitation of this approach however, is that
it is based on propositional rules and therefore
only applies to discrete domains. In our case, we
are interested in agents that are embedded in con-
tinuous domains. Next, we show how we extend
this framework to continuous dynamic environ-
ments.

4 Dynamic continuous domains

We are interested in problems that involve
multiple agents that are embedded in a contin-
uous domain, have sensors with which they can
observe their surroundings, and need to coordi-
nate their actions. As a main example we will use
the RoboCup simulation soccer domain (see [3]
and references therein) in which a team of eleven
agents have to fulfill a common goal (scoring more
goals than their opponent). Depending on the
current situation, certain agents on the field have
to coordinate their actions, for example the agent
that controls the ball must decide to which nearby
agent to pass, etc. Such dependencies can be
modeled by a CG that satisfies the following re-



quirements: (i) its connectivity should be dynam-
ically updated based on the current (continuous)
state, (ii) it should be sparse in order to keep the
dependencies and the associated local coordina-
tion problems as simple as possible.

4.1 Context-specificity using roles

Conditioning on a context that is defined over
a continuous domain is difficult in the origi-
nal rule-based CG representation. A way to
‘discretize’ the context is by assigning roles to
agents [9]. Roles are a natural way of introducing
domain prior knowledge to a multiagent problem
and provide a flexible solution to the problem of
distributing the global task of a team among its
members. In the soccer domain for instance one
can easily identify several roles ranging from ‘ac-
tive’ or ‘passive’ depending on whether an agent
is in control of the ball or not, to more specialized
ones like ‘striker’, ‘defender’, ‘goalkeeper’, etc.

Given a particular local situation, each agent
is assigned a role that is computed based on a
role assignment function that is common knowl-
edge among agents. The set of roles is finite and
ordered, so the most ‘important’ role is assigned
to an agent first, followed by the second most im-
portant role, etc. By construction, the same role
can be assigned to more than one agent, but each
agent is assigned only a single role. Environment-
dependent ‘potential’ functions can be used to de-
termine how appropriate an agent is for a particu-
lar role given the current context. Such functions
can for example be based on the spatial relation-
ships between the agents or the specific capabili-
ties of an agent. For more details on the assign-
ment of roles to agents see [9] and our experiments
later on.

Such an assignment of roles provides a natu-
ral way to parametrize a coordination structure
over a continuous domain. The intuition is that,
instead of directly coordinating the agents in a
particular situation, we assign roles to the agents
based on this situation and subsequently try to
‘coordinate’ the set of roles. For example, a pri-
ori rules can exist that specify which roles should
be coordinated and how. See Section 5 for exam-
ples.

The roles can be regarded as an abstraction
of the continuous state to a discrete context, al-
lowing the application of existing techniques for
discrete-state CGs. Moreover, roles can reduce
the action space of the agents by ‘locking out’
specific actions. For example, the role of the goal-
keeper does not include the action ‘score’, and in
a ‘passive’ role the action ‘shoot’ is deactivated.
Such a reduction of the action space can offer

computational savings, but more importantly it
can facilitate the solution of a local coordina-
tion game by restricting the joint action space
to a subspace that contains only one Nash equi-
librium.

4.2 Non-communicating agents

Variable elimination in a CG requires that each
agent first receives the payoff functions of its
neighboring agents, and after computing its opti-
mal conditional strategy it communicates a new
payoff function back to its neighbors. Similarly,
in the reverse process each agent needs to com-
municate its decision to its neighbors in order to
reach a coordinated joint action. The elimination
order is a priori defined and is common knowledge
among the agents.

In may practical dynamic situations, the
agents may not be able to communicate with all
neighbors (or have the time to finalize all commu-
nication before selecting an action) due to failures
or time constraints. However, when communica-
tion is unavailable the variable elimination algo-
rithm can still be used if we further impose the
requirement that the payoff function of an agent
i is common knowledge among all agents that are
reachable from i in the CG. Since only agents
that are reachable in the CG need to coordinate
their actions, the above requirement in fact frees
agents from having to communicate their local
payoff functions during optimization.

Moreover, in the noncommunicative case the
elimination order neither has to be fixed in ad-
vance nor has to be common knowledge among all
agents as in [4], but each agent is free to choose
any elimination order, for example, one that al-
lows the agent to quickly compute its own opti-
mal action. This is possible because a particular
elimination order affects only the speed of the al-
gorithm and not the computed joint action.

In summary, each agent i maintains a pool of
payoff functions, corresponding to all payoff func-
tions of the agents in its subgraph. Starting from
itself, agent i keeps eliminating agents using an
appropriate elimination order, until it computes
its own optimal action unconditionally on the ac-
tions of the others. For each eliminated agent j,
the newly generated payoff functions are intro-
duced into the pool of payoff functions of agent
i and the process continues. In the worst case,
agent i needs to eliminate all agents j 6= i, for j

reachable from i. Note that, although each agent
computes its own action in a different way (dur-
ing optimization the pool will look different for
different agents), the resulting joint action will
always be the optimal one.



In terms of complexity, the computational
costs for each individual agent are clearly in-
creased to compensate for the unavailable com-
munication. Instead of only optimizing for its
own action, in the worst case each agent has
to calculate the action of every other agent in
the subgraph. The computational cost per agent
increases thus linearly with the number of new
payoff functions generated during the elimination
procedure. Communication, however, is not used
anymore which allows for a speedup of the com-
plete algorithm since these extra individual com-
putations may now run in parallel. This is in
contrast to the original CG approach where com-
putations need to be performed sequentially.

5 Experiments

We have implemented the described frame-
work in our simulation robot soccer team UvA
Trilearn [3] to improve upon the ball passing be-
tween teammates. The RoboCup soccer server [2]
provides a fully distributed dynamic multiagent
domain with both teammates and adversaries.
It models many real-world complexities such as
noise in object movement, noisy sensors and actu-
ators, limited physical ability and restricted com-
munication.

In case of a non-coordinating pass, a teammate
moves to the interception point only after he has
observed a change in the ball velocity (indicating
someone has passed the ball) and computes that
he is the fastest teammate to the ball. Before the
ball changes velocity, he has no notion of the fact
that he will soon receive the ball and thus does
not coordinate with the passing player.

To accomplish coordination, all agents are first
dynamically assigned a role based on the current
continuous state. Thereafter, these roles are co-
ordinated by performing the variable elimination
algorithm using predefined value rules that make
use of the available actions and context variables.
Next, we will describe in more detail how we use
coordination graphs in order to coordinate the
passer and the receiver, but also the receiver with
the second receiver, that is, the player who will
be passed to by the first receiver.

First, we have implemented a role assign-
ment function that assigns the roles interceptor,
passer, receiver, and passive among the agents
using the continuous state information. The as-
signment of roles can be computed directly from
the current state information. For instance, the
fastest player to the ball will be assigned the in-
terceptor role when he is not able to kick the ball
and will be assigned the passer role when he can
kick the ball. All receiver roles are given to the

� � �
� � �
� � �
� � �

n

Figure 3: A situation involving one passer and
three possible receivers. The other agents are pas-
sive.

agents that are inside a predefined range of the
ball position. The rest of the players are pas-
sive. A common situation is depicted in Figure 3,
where the agent with the ball has the passer role,
the three players that are in range of the passer
are given the receiver role and the other players
are passive. This assignment of roles defines the
structure of the coordination graph: all intercep-
tors, passers, and receivers are connected. Note
that this assignment changes dynamically as the
state of the world (and thus the assignment of
roles) changes.
As long as the structure of the graph is known,

the connected agents can coordinate their actions.
Each agent can choose from the following set of
actions:

• passTo(i, dir): pass the ball to agent i. The
position to which is shot lies at a fixed dis-
tance from agent i in the direction dir ∈ D

with D = {center, n, nw,w, sw, s, se, e, ne}2.

• moveTo(dir): move in the direction dir ∈ D.

• dribble(dir): move with the ball in the kick-
able range of the agent in direction dir ∈ D.

• score: try to score by shooting towards the
best point on the opponent goal line [6].

• clearBall: clear the ball to the opponent side
by shooting the ball in the bisector of the
largest angle between the opponent defend-
ers.

• moveToStratPos: move to your strategic
position (a position based on the home posi-
tion of the agent and the current position of
the ball).

We also defined state variables that extract im-
portant (high-level) information from the world

2‘North’ is directed towards the opponent goal and
‘center’ corresponds to a pass directly to the current agent
position.



state. The first is is-pass-blocked(i, j, dir) that
indicates whether a pass from agent i to the po-
sition in direction dir of agent j is blocked by an
opponent or not. In this case no opponents are
located within a cone from the passing player to
this position. The second is is-in-front-of-goal(j)
that indicates whether the agent j is located
in front of the opponent goal and the last,
is-empty-space(i, dir), indicates that there are no
opponents in direction dir of agent i.
Finally, we can define the complete strategy of

the team by means of value rules which specify
the contribution to the global payoff in a specific
context. These value rules are specified for each
player i and make use of the above defined actions
and context variables3.

〈ppasser
1

; has-role-receiver(j) ∧

¬isPassBlocked(i, j, dir) ∧

ai = passTo(j, dir) ∧

aj = moveTo(dir) : u(j, dir)〉 ∀j 6= i

〈ppasser
2

; is-empty-space(i,n) ∧

ai = dribble(n) : 30〉

〈ppasser
3

; ai = clearBall : 10〉

〈ppasser
4

; is-in-front-of-goal(i) ∧

ai = score : 100〉

〈preceiver
5 ; has-role-interceptor(j) ∧

¬isPassBlocked(j, i, dir) ∧

ai = moveTo(dir) : u(i, dir)〉 ∀j 6= i

〈preceiver
6 ; has-role-passer(j) ∧

has-role-receiver(k) ∧

¬isPassBlocked(k, i, dir) ∧

aj = passTo(k, dir2) ∧

ak = moveTo(dir2) ∧

ai = moveTo(dir) : u(i, dir)〉 ∀j, k 6= i

〈preceiver
7 ; moveToStratPos : 10〉

〈pintercep.
8

; intercept : 100〉

〈ppassive
9

; moveToStratPos : 10〉

The first rule p1 indicates that a passer can
shoot the ball to the relative direction dir of the
player j in case the pass is not blocked by an op-
ponent and the receiver will move in that direc-
tion. The value that is contributed to the global
payoff is returned by u and depends on the posi-
tion where the receiving agent j will receive the

3Note that we enumerate all rules using variables. The
complete list of value rules is the combination of all pos-
sible instantiations of these variables. Although not spec-
ified, dir ∈ D.

�������
�������
�������

�������
�������
�������

1 2

3

n

Figure 4: The coordination graph at Fig. 3 after
conditioning on the state variables. The passer
(agent 1) decides to pass the ball to the first re-
ceiver (agent 2), while the second receiver (agent
3) moves to a good position for the first receiver
to pass the ball to.

pass (the closer to the opponent goal the better).
The next three rules indicate the other individ-
ual options for the passer: dribbling (we only al-
low forward dribbling), clearing the ball and scor-
ing. Using the same principle as the first rule, we
can also create more advanced dependencies. For
example, rule p5 indicates the situation where a
receiver already moves to the position it expects
the current interceptor to pass the ball to when it
reaches the ball. Rule p6 indicates that a receiver
can already move to a position, it will expect the
receiver of another pass to shoot the ball to. Rule
p7 is the situation where a receiving player moves
to its strategic position on the field. This action
is only executed when it is not able to coordinate
with one of the other agents, since it contributes
only a small value to the global payoff value. Fi-
nally, rules p8 and p9 contain the single action
option for respectively an interceptor (intercept
the ball) or a passive player (move to its strategic
position).

With the above rules, we illustrate that even
with a small set of rules a complete (although sim-
ple) team strategy can be specified that makes ex-
plicit use of coordination. Furthermore, the rules
are easily interpretable which makes it possible to
add prior knowledge into the problem. Another
advantage is that the rules are very flexible: exist-
ing rules can directly be added or removed. This
makes it possible to change the complete strat-
egy of the team when playing different kinds of
opponents.

The above rules contain a lot of context-
dependencies represented in the state vari-
ables. In Figure 3 we simplified the coor-
dination graph by conditioning on the roles,
if we now condition further on the specific
context variables, we get the graph depicted
in Figure 4, corresponding to the following
value rules (we assume for simplicity that only



the context variables ¬isPassBlocked(1, 2, s) and
¬isPassBlocked(2, 3,nw) are true):

A1 : 〈p
passer
1

; a1 = passTo(2, s) ∧

a2 = moveTo(s) : 50〉

〈ppasser
2

; a1 = dribble(n) : 30〉

〈ppasser
3

; a1 = clearBall : 10〉

A2 : 〈p
receiver
7 ; a2 = moveToStratPos : 10〉

A3 : 〈p
receiver
6 ; a1 = passTo(2, dir) ∧

a2 = moveTo(dir) ∧

a3 = moveTo(nw) : 30〉

〈preceiver
7 ; a3 = moveToStratPos : 10〉

Now the variable elimination algorithm can be
performed. Each agent is eliminated from the
graph by maximizing its local payoff. In the case
that agent 1 is eliminated first, it gathers all value
rules that contain a1 and distributes its condi-
tional strategy

〈ppasser
1

; a2 = moveTo(s) ∧

a3 = moveTo(nw) : 80〉

〈ppasser
1

; a2 = moveTo(s) ∧

a3 = ¬moveTo(nw) : 50〉

〈ppasser
1

; a2 = ¬moveTo(s) : 30〉

to its parents. After agent 2 and 3 have also fixed
their strategy, agent 1 will perform passTo(2, s),
agent 2 will execute moveTo(s) to intercept the
pass and agent 3 will perform moveTo(nw) to in-
tercept a possible future pass of agent 2. In case
for some unpredicted reason the first pass fails,
the graph will automatically be updated and cor-
respond to the new situation.

To test this approach, we played games against
ourselves, with one team using explicit coordina-
tion and the other team without using any co-
ordination at all during passing. The latter case
was modeled by deleting the rules, p5 and p6 from
the list of value rules and removing the condition

Table 1: Results of 10 games against ourselves,
with and without coordination in passing.

With Without

Wins 5 2
Draws 3 3
Losses 2 5
Avg. score 0.9 (± 1.19) 0.2 (± 0.42)
Passing % 82.72 (± 2.06) 64.62 (± 2.17)

aj = moveTo(dir) from the first value rule to in-
dicate that it is not necessary for the receiver to
anticipate the pass.

Table 1 shows the results over the course of
10 full-length games. Each player can take 6000
decisions during each match, so the coordina-
tion algorithm was executed 60.000 times by each
player. The strategy for the team was completely
specified by the value rules above. These rules
are too general to create very sophisticated scor-
ing possibilities and therefore the difference in
goal difference is rather small. The actual coor-
dination, however, was used to improve the pass-
ing between the players and therefore we were
more interested in detailed statistics about the
passing percentages. It turned out that the suc-
cessful passing percentage over these 10 matches
was 82.72% (total of 1450 passes) for the team
with the CG and 64.62% (total of 1411 passes)
for the team without. These percentages indicate
that due to the better coordination of the team-
mates, fewer mistakes were made when the ball
was passed between teammates.

6 Conclusions and future work

We showed how coordination graphs can be
successfully applied to cases where a group of
robotic agents are embedded in a dynamic and
continuous domain and take decisions in a dis-
tributed fashion.. We assigned roles in order to
abstract from the continuous state to a discrete
context, allowing the application of existing tech-
niques for discrete-state CGs. We also showed
that we can dispense with communication if ad-
ditional assumptions about common knowledge
are introduced.

Currently, we assume that each agent observes
that part of the state that affects its local deci-
sions and its role assignment. As future work,
we would like to apply the same framework to
domains where the agents do not observe all
required state information. Possible solutions
would be to make the action of the agent de-
pendent on its current state information (i.e., by
actively looking towards relevant hidden parts of
the state space) or to derive missing state infor-
mation based on the observed actions from agents
(and thus to deduce why the agent is performing
its action).

We also want to investigate situations in which
agents break down or start acting maliciously. In
the current algorithm we neglect the possibility of
agent failures. One obvious approach is to remove
all value rules involving an agent that appears to
have failed (this can either be observed from the
agent’s sensors or derived from the fact that no



messages were received within a specific time in-
terval) and solve the coordination problem with-
out this agent. The returned payoff may be less
than the situation in which that agent was avail-
able but it is the highest possible payoff possible
considering that agent has failed.
Furthermore, we are interested in applying re-

inforcement learning techniques to a continuous-
domain CG in order to learn the payoff functions
in an automatic way. Finally, from an application
point of view we want to apply the CG model fur-
ther to the simulation RoboCup, such that the
agents also coordinate during other actions than
passing, like organizing the defense or obstructing
opponent passes.

Acknowledgements

This research is supported by PROGRESS,
the embedded systems research program of the
Dutch organization for Scientific Research NWO,
the Dutch Ministry of Economic Affairs and the
Technology Foundation STW, project AES 5414.

References

[1] C. Boutilier. Planning, learning and coordi-
nation in multiagent decision processes. In
Conf. on Theoretical Aspects of Rationality
and Knowledge, 1996.

[2] M. Chen, E. Foroughi, F. Heintz,
Z. Huang, S. Kapetanakis, K. Kos-
tiadis, J. Kummeneje, I. Noda, O. Obst,
P. Riley, T. Steffens, Y. Wang, and
X. Yin. RoboCup Soccer Server for Soccer
Server Version 7.07 and later, 2002. At
http://sserver.sourceforge.net/.

[3] R. de Boer and J. R. Kok. The Incremen-
tal Development of a Synthetic Multi-Agent
System: The UvA Trilearn 2001 Robotic
Soccer Simulation Team. Master’s thesis,
University of Amsterdam, The Netherlands,
Feb. 2002.

[4] C. Guestrin, D. Koller, and R. Parr. Mul-
tiagent planning with factored MDPs. In
Advances in Neural Information Processing
Systems (NIPS-14), Canada, Dec. 2001.

[5] C. Guestrin, S. Venkataraman, and
D. Koller. Context specific multiagent
coordination and planning with factored
MDPs. In Proceedings of the Eighteenth Na-
tional Conference on Artificial Intelligence,
Edmonton, Canada, July 2002.

[6] J. R. Kok, R. de Boer, N. Vlassis, and
F. Groen. Towards an optimal scoring policy

for simulated soccer agents. In G. Kaminka,
P. Lima, and R. Rojas, editors, RoboCup
2002: Robot Soccer World Cup VI, pages
292–299, Fukuoka, Japan, 2002. Springer-
Verlag.

[7] M. J. Osborne and A. Rubinstein. A course
in game theory. The MIT Press, Cambridge,
MA, 1994.

[8] S. J. Russell and P. Norvig. Artificial Intel-
ligence: A Modern Approach. Prentice Hall,
Englewood Cliffs, NJ, 1995.

[9] M. T. J. Spaan, N. Vlassis, and F. C. A.
Groen. High level coordination of agents
based on multiagent Markov decision pro-
cesses with roles. In A. Saffiotti, ed-
itor, IROS’02 Workshop on Cooperative
Robotics, Lausanne, Switzerland, Oct. 2002.

[10] A. S. Tanenbaum. Distributed Operating
Systems. Prentice Hall, 1995.

[11] M. Wooldridge. An Introduction to Multia-
gent Systems. John Wiley and Sons, Chich-
ester, England, feb 2002.


	Introduction
	The coordination problem
	Coordination graphs
	Dynamic continuous domains
	Context-specificity using roles
	Non-communicating agents

	Experiments
	Conclusions and future work

