
Multi-robot decision making using coordination graphs

Jelle R. Kok Matthijs T. J. Spaan Nikos Vlassis

Intelligent Autonomous Systems Group, Informatics Institute

Faculty of Science, University of Amsterdam, The Netherlands

{jellekok,mtjspaan,vlassis}@science.uva.nl

Abstract

Within a group of cooperating agents the decision
making of an individual agent depends on the actions
of the other agents. In dynamic environments, these
dependencies will change rapidly as a result of the
continuously changing state. Via a context-specific
decomposition of the problem into smaller subprob-
lems, coordination graphs offer scalable solutions to
the problem of multiagent decision making. We will
apply coordination graphs to the continuous domain
by assigning roles to the agents and then coordinating
the different roles. Finally, we will demonstrate this
method in the RoboCup soccer simulation domain.

1 Introduction

A multiagent (multi-robot) system is a collection
of agents that coexist in an environment, interact (ex-
plicitly or implicitly) with each other, and try to opti-
mize a performance measure. Research in multiagent
systems aims at providing principles for the construc-
tion of complex systems containing multiple indepen-
dent agents and focuses on behavior management is-
sues (e.g. coordination of behaviors) in such systems.
In our case, we are interested in fully cooperative

multiagent systems in which all agents share a com-
mon goal. A key aspect in such systems is the prob-
lem of coordination: the process that ensures that the
individual decisions of the agents result in jointly op-
timal decisions for the group.
In principle game theoretic techniques can be ap-

plied to solve the coordination problem [7]. The prob-
lem with this approach is that the joint action space is
exponential in the number of agents. For practical sit-
uations, involving many agents, modeling an n-person
games becomes intractable. However, the particular
structure of the coordination problem can often be
exploited to reduce its complexity.
A recent approach involves the use of a coordina-

tion graph (CG) [4]. In this graph, each node repre-
sents an agent, and an edge indicates that the corre-
sponding agents have to coordinate their actions. In
a context-specific CG [5] the topology of the graph is
dynamically updated based on the current context.

In this paper we will describe a framework to coor-
dinate multiple robots using coordination graphs. We
assume a group of robotic agents that are embedded
in a continuous and dynamic domain and are able to
perceive their surroundings with sensors. The contin-
uous nature of the state space makes the direct appli-
cation of context-specific CGs difficult. To alleviate
the problem, we propose a discretization of the state
by assigning roles to the agents, and subsequently ap-
ply the CG-based method to the derived set of roles.
It turns out that such an approach offers additional

benefits: the set of roles allows for the definition of
natural coordination rules that exploit prior knowl-
edge about the domain. This greatly simplifies the
modeling and the solution of the problem at hand.
The setup of the paper is as follows. In Section 2

we review the coordination problem from a game-
theoretic point of view, and in Section 3 we explain
the concept of a CG. In Section 4 we will describe
our framework to coordinate agents in a continuous
dynamic environment using roles, followed by an ex-
tensive example using the RoboCup soccer simulation
domain in Section 5. Finally, we give our conclusions
and discuss possible further extensions in Section 6.

2 The coordination problem

In order to place the coordination problem in a
broader context, we will first review it from a game
theoretic point of view. A strategic game [7] is a tuple
(n,A1..n, R1..n) where n is the number of agents, Ai

is the set of actions of agent i and Ri is the payoff
function for agent i. This payoff function maps the
selected joint action A = A1× ...×An to a real value:
Ri(A) → IR. Each agent selects an action from its
action set, and then receives a payoff based on the
actions selected by all agents. The goal of the agents
is to select, via their individual decisions, the most
profitable joint action. In the remainder of this paper,
we are interested in fully cooperative strategic games,
so-called coordination games, in which all agents share
the same payoff function R1 = . . . = Rn = R.
A Nash equilibrium defines a joint action a∗ ∈

A with the property that for every agent i holds
Ri(a

∗
i , a

∗
−i) ≥ Ri(ai, a

∗
−i) for all ai ∈ Ai, where a−i



PSfrag replacements

G1

G2 G3

G4

Figure 1: An example coordination graph for a 4-
agent problem.

is the joint action for all agents excluding agent i.
Such an equilibrium joint action is a steady state from
which no agent can profitably deviate given the ac-
tions of the other agents. Formally, the coordination
problem can be seen as the problem of selecting one
out of many Nash equilibria in a coordination game.
Several different methods exist to solve a coordina-

tion game [1], for example by using communication,
learning, or by imposing social conventions. If we as-
sume that with these methods the Nash equilibria can
be found, coordination becomes the problem of se-
lecting the same equilibrium. However, the number
of joint actions grows exponentially with the num-
ber of agents, making it infeasible to determine all
equilibria in the case of many agents. This calls for
methods that first reduce the size of the joint action
space before solving the coordination problem. One
such approach, explained next, is based on the use of
a coordination graph that captures local coordination
requirements between agents.

3 Coordination graphs

A coordination graph (CG) represents the coordi-
nation requirements of a system [4]. A node in the
graph represents an agent, while an edge in the graph
defines a (possible directed) dependency between two
agents. Only interconnected agents have to coordi-
nate their actions at any particular instance. Figure 1
shows a possible CG for a 4-agent problem. In this
example, G2 has to coordinate with G1, G4 has to co-
ordinate with G3, G3 has to coordinate with both G4

and G1, and G1 has to coordinate with both G2 and
G3. When the global payoff function can be decom-
posed as a sum of local payoff functions, the global
coordination problem can be replaced by a number of
easier local coordination problems. The agents can
then find the joint optimal action by using an efficient
variable elimination algorithm in combination with a
message passing scheme [4].
The algorithm assumes that each agent knows its

neighbors in the graph (but not necessarily their pay-
off function which might depend on other agents).
Each agent is ‘eliminated’ from the graph by solv-
ing a local optimization problem that involves only

this agent and its neighbors: the agent collects from
its neighbors all relevant payoff functions, then opti-
mizes its decision conditionally on its neighbors’ de-
cisions, and communicates the resulting ‘conditional’
payoff function back to its neighbors. A next agent is
selected and the process continues. When all agents
have been eliminated, each agent communicates its de-
cision to its neighbors in the reverse elimination order
in order for them to fix their strategy.
The local payoff functions can be matrix-based [4]

or rule-based [5]. In the latter case the payoff rules
are defined using ‘value rules’, which specify how an
agent’s payoff depends on the current context. The
context being defined as a propositional rule over the
state variables and the actions of the agent’s neigh-
bors. These rules can be regarded as a sparse repre-
sentation of the complete payoff matrices. Next, we
will define this more formally.
Let G1, . . . , Gn be a group of agents, where each

agent Gj has to choose an action aj ∈ Aj and let X be
a set of discrete state variables. The context c is then
an element from the set of all possible combinations
of the state and action variables, c ∈ C ⊆ X ∪ A. A
value rule 〈 p ; c : v〉 is a function p : C → IR such
that p(x, a) = v when c is consistent with the current
context and 0 otherwise.
As an example, consider the case where two per-

sons have to coordinate their actions to enter a nar-
row door. We can describe this situation using the
following value rule:

〈p1 ; in-front-of-same-door(G1, G2) ∧

a1 = enterDoor ∧

a2 = enterDoor : −50〉

This rule indicates that when the two agents are lo-
cated in front of the same door and both select the
same action (entering the door), the global payoff
value will be reduced by 50. When the state is not
consistent with the above rule (and the agents are
not located in front of the same door), the rule does
not apply and the agents do not have to coordinate
their actions. By conditioning on the current state
the agents can discard all irrelevant rules, and as a
consequence the CG is dynamically updated and sim-
plified. Each agent thus only needs to observe that
part of the state mentioned in its value rules.
For a more extensive example, see Figure 2. Be-

neath the left graph all value rules, defined over binary
action and context variables, are depicted together
with the agent the rule applies to. The coordination
dependencies between the agents are represented by
directed edges, where each (child) agent has an in-
coming edge from the (parent) agent that affects its
decision. After the agents observe the current state,
x = true, the last rule does not apply anymore and
can be removed. As a consequence, the optimal joint



PSfrag replacements

G1 G1

G2G2 G3G3

G4 G4

G1 〈a1 ∧ a3 ∧ x : 4〉
〈a1 ∧ a2 ∧ x : 5〉

G2 〈a2 ∧ x : 2〉
G3 〈a3 ∧ a2 ∧ x : 5〉
G4 〈a3 ∧ a4 ∧ x : 10〉

〈a1 ∧ a3 : 4〉
〈a1 ∧ a2 : 5〉
〈a2 : 2〉
〈a3 ∧ a2 : 5〉

Figure 2: Initial coordination graph (left) and graph
after conditioning on the context x = true (right).

action is independent of the action of G4 and the edge
to G4 can be deleted from the graph as shown in the
right graph of Figure 2.
After the agents have conditioned on the state vari-

ables, the agents are one by one eliminated from the
graph. Let us assume that we first eliminate G3 in the
above example. After collecting all relevant rules, G3

has to maximize over the rules 〈a1∧a3 : 4〉〈a3∧a2 : 5〉.
For all possible actions of G1 and G2, G3 determines
its best response and then distributes this conditional
strategy, in this case equal to 〈a2 : 5〉〈a1 ∧ a2 : 4〉,
to its parent G2. After this step, G3 has no children
in the coordination graph anymore and is eliminated.
The procedure then continues and after G2 has dis-
tributed its conditional strategy 〈a1 : 11〉〈a1 : 5〉 to
G1, it is also eliminated. Finally, G1 is the last agent
left and fixes its action to a1. Now a second pass
in the reverse order is performed, where each agent
distributes its strategy to its parents, who then deter-
mine their final strategy. This results in the optimal
joint action, {a1, a2, a3} and a global payoff of 11.
The outcome of this algorithm is independent of

the elimination order and the distribution of the rules,
and will always result in an optimal joint action [4].
A limitation of this approach is that it is based on

propositional rules and therefore only applies to dis-
crete domains. However, we are interested in robots
that are embedded in continuous domains. Next, we
will show how to utilize this framework in continuous
dynamic environments.

4 Dynamic continuous environments

We are interested in problems that involve mul-
tiple robots that are embedded in a continuous do-
main, have sensors with which they can observe their
surroundings, and need to coordinate their actions.
As a main example we will use the RoboCup simula-
tion soccer domain (see [3] and references therein) in
which a team of eleven agents have to fulfill a com-

mon goal (scoring more goals than their opponent).
Depending on the current situation, certain agents on
the field have to coordinate their actions, for exam-
ple the agent that controls the ball must decide to
which nearby agent to pass, etc. Such dependencies
can be modeled by a CG that satisfies the following
requirements: (i) its connectivity should be dynami-
cally updated based on the current (continuous) state,
(ii) it should be sparse in order to keep the dependen-
cies and the associated local coordination problems as
simple as possible.
Conditioning on a context that is defined over a

continuous domain is difficult in the original rule-
based CG representation. A way to ‘discretize’ the
context is by assigning roles to agents [8]. Roles are a
natural way of introducing domain prior knowledge to
a multiagent problem and provide a flexible solution to
the problem of distributing the global task of a team
among its members. In the soccer domain for instance
one can easily identify several roles ranging from ‘ac-
tive’ or ‘passive’ depending on whether an agent is in
control of the ball or not, to more specialized ones like
‘striker’, ‘defender’, ‘goalkeeper’, etc.
Given a particular local situation, each agent is as-

signed a role that is computed based on a role as-
signment function that is common knowledge among
agents. The set of roles is finite and ordered, so the
most ‘important’ role is assigned to an agent first, fol-
lowed by the second most important role, etc. By
construction, the same role can be assigned to more
than one agent, but each agent is assigned only a sin-
gle role. Environment-dependent ‘potential’ functions
can be used to determine how appropriate an agent is
for a particular role given the current context. For
details on the assignment of roles to agents see [8].
Such an assignment of roles provides a natural way

to parametrize a coordination structure over a contin-
uous domain. The intuition is that, instead of directly
coordinating the agents in a particular situation, we
assign roles to the agents based on this situation and
subsequently try to ‘coordinate’ the set of roles. A
priori rules exist that specify which roles should be
coordinated and how. In Section 5 we give a detailed
example from robot soccer.
The roles can be regarded as an abstraction of a

continuous state to a discrete context, allowing the ap-
plication of existing techniques for discrete-state CGs.
Furthermore, roles can reduce the action space of the
agents by ‘locking out’ specific actions. For example,
the role of the goalkeeper does not include the action
‘score’, and in a ‘passive’ role the action ‘shoot’ is de-
activated. Such a reduction of the action space can
offer computational savings, but more importantly it
can facilitate the solution of a local coordination game
by restricting the joint action space to a subspace that
contains only one Nash equilibrium.



� � �
� � �
� � �
� � �

n

Figure 3: A situation involving one passer and three
possible receivers. The other agents are passive.

5 Experiments

We have implemented this framework in our sim-
ulation robot soccer team UvA Trilearn [3] to im-
prove upon the ball passing between teammates. The
RoboCup soccer server [2] provides a fully distributed
dynamic multi-robot domain with both teammates
and adversaries. It models many real-world complex-
ities such as noise in object movement, noisy sensors
and actuators, limited physical ability and restricted
communication.
The RoboCup soccer simulation does not allow

agents to communicate with more than one agent at
the same time, which makes it impossible to apply the
original variable elimination algorithm. Therefore, we
have decided to make the state fully observable to all
agents. This makes communication superfluous, since
each agent can model the complete variable elimina-
tion algorithm by itself (see [6] for details). This has
no effect on the outcome of the algorithm.
In the non-coordinating case a teammate moves to

the interception point only after he has observed a
change in the ball velocity (after someone has passed
the ball) and concludes that he is the fastest teammate
to the ball. Before the ball changes velocity, he has
no notion of the fact that he will soon receive the ball
and does not coordinate with the passing player.
To accomplish coordination, all agents are first dy-

namically assigned a role based on the current state.
Next, these roles are coordinated by performing the
variable elimination algorithm using predefined value
rules that make use of the available actions and con-
text variables. Hereafter, we will describe in more
detail how we use coordination graphs in order to co-
ordinate the passer and the receiver, but also the re-
ceiver with the second receiver, that is, the player who
will be passed to by the first receiver.
First, we have implemented a role assignment

function that assigns the roles interceptor, passer,
receiver, and passive among the agents using the
continuous state information. The assignment of roles
can be computed directly from the current state infor-
mation. For instance, the fastest player to the ball will

be assigned the interceptor role when he is not able to
kick the ball and will be assigned the passer role when
he can kick the ball. All receiver roles are given to the
agents that are inside a predefined range of the ball
position. The rest of the players are passive. A com-
mon situation is depicted in Figure 3, where the agent
with the ball has the passer role, the three players that
are in range of the passer are given the receiver role
and the other players are passive. This assignment of
roles defines the structure of the coordination graph:
all interceptors, passers, and receivers are connected.
Note that this assignment changes dynamically as the
state of the world changes.
Now all connected agents have to coordinate their

actions. For this, each agent can select one of the
following actions:

• passTo(i, dir): pass the ball to a position with a
fixed distance from agent i in the direction dir ∈
D = {center, n, nw,w, sw, s, se, e, ne}1.

• moveTo(dir): move in the direction dir ∈ D.

• dribble(dir): move with ball in direction dir ∈ D.

• score: try to score in the opponent goal.

• clearBall: shoot the ball hard between the op-
ponent defenders to the opponent side.

• moveToStratPos: move to agent’s strategic po-
sition (based on home and current ball position).

We also defined state variables that extract impor-
tant (high-level) information from the world state.
The first is is-pass-blocked(i, j, dir) that indicates
whether a pass from agent i to the position in direc-
tion dir of agent j is blocked by an opponent or not.
In this case no opponents are located within a cone
from the passing player to this position. The second is
is-in-front-of-goal(j) that indicates whether the agent
j is located in front of the opponent goal and the last,
is-empty-space(i, dir), indicates that there are no op-
ponents in direction dir of agent i.
Finally, we can define the complete strategy of the

team by means of value rules which specify the contri-
bution to the global payoff in a specific context. These
value rules are specified for each player i and make use
of the above defined actions and context variables2.

〈ppasser
1

; has-role-receiver(j) ∧

¬isPassBlocked(i, j, dir) ∧

ai = passTo(j, dir) ∧

aj = moveTo(dir) : u(j, dir)〉 ∀j 6= i

1‘North’ is directed towards the opponent goal and ‘center’

corresponds to a pass directly to the current agent position.
2Note that we enumerate all rules using variables. The com-

plete list of value rules is the combination of all possible instan-

tiations of these variables. In all rules, dir ∈ D.



〈ppasser
2

; is-empty-space(i,n) ∧

ai = dribble(n) : 30〉

〈ppasser
3

; ai = clearBall : 10〉

〈ppasser
4

; is-in-front-of-goal(i) ∧

ai = score : 100〉

〈preceiver
5 ; has-role-interceptor(j) ∧

¬isPassBlocked(j, i, dir) ∧

ai = moveTo(dir) : u(i, dir)〉 ∀j 6= i

〈preceiver
6 ; has-role-passer(j) ∧

has-role-receiver(k) ∧

¬isPassBlocked(k, i, dir) ∧

aj = passTo(k, dir2) ∧

ak = moveTo(dir2) ∧

ai = moveTo(dir) : u(i, dir)〉 ∀j, k 6= i

〈preceiver
7 ; moveToStratPos : 10〉

〈pintercep.
8

; intercept : 100〉

〈ppassive
9

; moveToStratPos : 10〉

The first rule p1 indicates that a passer can shoot
the ball to the relative direction dir of the player j in
case the pass is not blocked by an opponent and the
receiver will move in that direction. The value that
is contributed to the global payoff is returned by u(j)
and depends on the position where the receiving agent
j will receive the pass (the closer to the opponent goal
the better). The next three rules indicate the other
individual options for the passer: dribbling (we only
allow forward dribbling), clearing the ball and scoring.
Using the same principle, we can also create more ad-
vanced dependencies. For example, rule p5 indicates
the situation where a receiver already moves to the
position it expects the current interceptor to pass the
ball to when it reaches the ball. Rule p6 indicates
that a receiver can already move to a position it will
expect the receiver of another pass to shoot the ball
to. Rule p7 describes the situation where a receiving
player moves to its strategic position on the field. This
action is only executed when it is not able to coordi-
nate with one of the other agents, since it has only
a small global payoff value. Finally, rules p8 and p9

contain the single action option for respectively an in-
terceptor (intercept the ball) or a passive player (move
to its strategic position).
With the above rules, we illustrate that even with a

small set of rules a complete (although simple) team
strategy can be specified that makes explicit use of
coordination. Furthermore, the rules are easily inter-
pretable which makes it possible to add prior knowl-
edge into the problem. Another advantage is that the
rules are very flexible: existing rules can directly be
added or removed. This makes it possible to change

the complete strategy of the team when playing dif-
ferent kinds of opponents.
The above rules contain a lot of context-

dependencies represented in the state variables. In
Figure 3 we simplified the coordination graph by
conditioning on the roles, if we now condition fur-
ther on the specific context variables, we get the
graph depicted in Figure 4, corresponding to the
following value rules (we assume for simplicity that
only the context variables ¬isPassBlocked(1, 2, s) and
¬isPassBlocked(2, 3,nw) are true):

G1 : 〈p
passer
1

; a1 = passTo(2, s) ∧

a2 = moveTo(s) : 50〉

〈ppasser
2

; a1 = dribble(n) : 30〉

〈ppasser
3

; a1 = clearBall : 10〉

G2 : 〈p
receiver
7 ; a2 = moveToStratPos : 10〉

G3 : 〈p
receiver
6 ; a1 = passTo(2, dir) ∧

a2 = moveTo(dir) ∧

a3 = moveTo(nw) : 30〉

〈preceiver
7 ; a3 = moveToStratPos : 10〉

Now the variable elimination algorithm can be per-
formed. Each agent is eliminated from the graph by
maximizing its local payoff. In the case that agent 1 is
eliminated first, it gathers all value rules that contain
a1 and distributes its conditional strategy

〈ppasser
1

; a2 = moveTo(s) ∧

a3 = moveTo(nw) : 80〉

〈ppasser
1

; a2 = moveTo(s) ∧

a3 = ¬moveTo(nw) : 50〉

〈ppasser
1

; a2 = ¬moveTo(s) : 30〉

to its parents. After agent 2 and 3 have also fixed their
strategy, agent 1 will perform passTo(2, s), agent 2 will
execute moveTo(s) to intercept the pass and agent 3
will perform moveTo(nw) to intercept a possible fu-
ture pass of agent 2. In case for some unpredicted
reason the first pass fails, the graph will automatically
be updated and correspond to the new situation.
To test this approach, we played games against our-

selves, with one team using explicit coordination and
the other team without using any coordination at all
during passing. The latter case was modeled by delet-
ing the rules p5, p6 from the list of value rules and
removing the condition aj = moveTo(dir) from the
first value rule to indicate that it is not necessary for
the receiver to anticipate the pass.
Table 1 shows the results over the course of 10 full-

length games. Each player can take 6000 decisions
during each match, so the coordination algorithm was



�������
�������
�������

�����
�����
�����

1 2

3

n

Figure 4: The coordination graph at Fig. 3 after con-
ditioning on the state variables. The passer (agent 1)
decides to pass the ball to the first receiver (agent 2),
while the second receiver (agent 3) moves to a good
position for the first receiver to pass the ball to.

Table 1: Results of 10 games against ourselves, with
and without coordination in passing.

With Without

Wins 5 2
Draws 3 3
Losses 2 5
Avg. score 0.9 (± 1.19) 0.2 (± 0.42)
Passing % 82.72 (± 2.06) 64.62 (± 2.17)

executed 60.000 times by each player. The strategy
for the team was completely specified by the value
rules above. These rules are not specific enough to
create good scoring probabilities and therefore the dif-
ference in goal difference is rather small. The actual
coordination, however, was used to improve the pass-
ing between the players and therefore we were more
interested in detailed statistics about the passing per-
centages. It turned out that the successful passing
percentage over these 10 matches was 82.72% (total
of 1450 passes) for the team with the CG and 64.62%
(total of 1411 passes) for the team without. These
percentages indicate that due to the better coordi-
nation of the teammates, fewer mistakes were made
when the ball was passed between teammates.

6 Conclusions and future work

We showed how coordination graphs can be suc-
cessfully applied to cases where a group of robotic
agents are embedded in a dynamic and continuous do-
main. We assigned roles in order to abstract from the
continuous state to a discrete context, allowing the ap-
plication of existing techniques for discrete-state CGs.
Currently, we assume that each agent observes that

part of the state that affects its local decisions and
its role assignment. As future work, we would like
to apply the same framework to domains where the
agents do not observe all required state information.
Possible solutions would be to make the action of the

agent dependent on its current state information (i.e.,
by actively looking towards relevant hidden parts of
the state space) or to derive missing state informa-
tion based on the observed actions from agents (and
thus to deduce why the agent is performing its ac-
tion). Second, we are interested in applying reinforce-
ment learning techniques to a continuous-domain CG
in order to learn the payoff functions in an automatic
way. Finally, from an application point of view we
want to apply the CG model further to the simula-
tion RoboCup, such that the agents also coordinate
during other actions than passing, like organizing the
defense or obstructing opponent passes.

Acknowledgements

This research is supported by PROGRESS, the em-
bedded systems research program of the Dutch organiza-
tion for Scientific Research NWO, the Dutch Ministry of
Economic Affairs and the Technology Foundation STW,
project AES 5414.

References

[1] C. Boutilier. Planning, learning and coordination in
multiagent decision processes. In Proc. Conf. on The-

oretical Aspects of Rationality and Knowledge, 1996.

[2] M. Chen, E. Foroughi, F. Heintz, Z. Huang,
S. Kapetanakis, K. Kostiadis, J. Kummeneje, I. Noda,
O. Obst, P. Riley, T. Steffens, Y. Wang, and X. Yin.
RoboCup Soccer Server for Soccer Server Version 7.07
and later, 2002. At http://sserver.sourceforge.net/.

[3] R. de Boer and J. R. Kok. The incremental devel-
opment of a synthetic multi-agent system: The UvA
Trilearn 2001 robotic soccer simulation team. Mas-
ter’s thesis, University of Amsterdam, The Nether-
lands, Feb. 2002.

[4] C. Guestrin, D. Koller, and R. Parr. Multiagent plan-
ning with factored MDPs. In Advances in Neural Infor-
mation Processing Systems 14. The MIT Press, 2002.

[5] C. Guestrin, S. Venkataraman, and D. Koller.
Context-specific multiagent coordination and planning
with factored MDPs. In AAAI 8th Nation. Conf. on

Artificial Intelligence, Edmonton, Canada, July 2002.

[6] J. R. Kok, M. T. J. Spaan, and N. Vlassis. An approach
to noncommunicative multiagent coordination in con-
tinuous domains. In M. Wiering, editor, Benelearn
2002: Proceedings of the Twelfth Belgian-Dutch Con-

ference on Machine Learning, pages 46–52, Utrecht,
The Netherlands, Dec. 2002.

[7] M. J. Osborne and A. Rubinstein. A course in game

theory. MIT Press, 1994.

[8] M. T. J. Spaan, N. Vlassis, and F. C. A. Groen.
High level coordination of agents based on multiagent
Markov decision processes with roles. In A. Saffiotti,
editor, IROS’02 Workshop on Cooperative Robotics,
Lausanne, Switzerland, Oct. 2002.


	Introduction
	The coordination problem
	Coordination graphs
	Dynamic continuous environments
	Experiments
	Conclusions and future work

