
Real world multiagent systems:

information sharing, coordination and planning

Frans C.A. Groen, Matthijs T.J. Spaan, and Jelle R. Kok

Informatics Institute, University of Amsterdam,
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

Abstract. Applying multiagent systems in real world scenarios requires
some essential research questions to be answered. International chal-
lenges play an important role in comparing different approaches to these
questions. One such a challenge in this field is RoboCup. In this paper
we focus on three of these research questions: A shared world model
which estimates the global positions of objects in order to reduce the
uncertainty in the environment. It allows us to fuse observations made
by different agents and improve position estimates of each agent. Second,
we show how coordination graphs can be applied to multi-robot teams to
allow for efficient coordination. Third, we present work in the POMDP
framework for agent planning in uncertain environments, in which the
agent only receives partial information (through its sensors) regarding
the true state of environment.

1 Introduction

In the future intelligent multiagent systems will be deployed in real world sit-
uations, for instance, as service robots, transportation systems, exploration of
hazardous environments, homeland security and rescue in disaster scenarios [20].
The societal and economical benefits of building such systems are huge, while at
the same time there are still important research questions to be answered before
these systems can be applied. This requires the integration of many technolo-
gies such as mechatronics, control theory, computer vision, self-learning systems
and cooperative autonomous systems [11]. These agents are “intelligent on-line
embedded systems” which are able to operate in human habited dynamic en-
vironments. Local intelligence and mutual communication make systems robust
to erroneous perception or malfunctioning of one or more robots.

How to evaluate these complex systems is not an easy question. The current
trend to enable comparison of different algorithms is to make the data available
on Internet, apart from only publishing the results obtained from them in ar-
ticles. However, the evaluation of real world multiagent systems is much more
complex. Simulation is certainly useful in this respect, but real comparisons re-
quire the deployment of systems in real world scenarios. It has been discerned
that international challenges may play an important role in those evaluations.
A challenge should be sufficiently rich so that the different aspects of the prob-
lem are well represented. Challenges should not change every year but should



have a stable component so that ideas or even best algorithms can be adopted
by other competitors, ensuring that a rapid development takes place over the
years and incorporating all groups involved. An example is the DARPA Grand
Challenge: a race for autonomous ground vehicles through desert-like terrain. A
challenge formulated in multiagent collaboration is the RoboCup challenge [5,
10]: to have in 2050 a team of humanoid robots playing a soccer match against
a human team. Robot soccer is quite representative for the problems occurring
when multiagent systems are applied in real world scenarios. There are a number
of possibly heterogeneous robots that have to work together toward a common
goal. The domain is continuous and dynamic, there are opponents whose behav-
ior will not be fully predictable. Another challenge is Robot Rescue: the search
and rescue for large scale disasters, e.g., searching for survivors. It started as a
simulation project but now also involves a real environment developed by NIST.

In section 2 we will discuss the RoboCup challenge and the topics addressed
in this challenge. Three of those topics are addressed in the successive sections in
more detail. In section 3 we will discuss a distributed world model, which forms
the basis for planning and learning to coordinate the multi-robot team. We con-
sider how the agents can build and maintain shared models of the environment.
We have been studying the problem of robot localization, that is, how a robot
can find its position in the environment under conditions of uncertainty in its
motion and sensor measurements. We are using particle filters for this problem.
Section 4 explores the framework of coordination graphs for solving multiagent
coordination problems in continuous environments such as RoboCup, as well
as how learning can be performed in such settings. Section 5 addresses a sec-
ond problem, planning under uncertainty, and here we are investigating solution
techniques for partially observable Markov decision processes. Finally, section 6
wraps up with conclusions and avenues for future developments.

2 RoboCup, a challenge for real world multiagent

systems

In 1997 the RoboCup Federation organized the first RoboCup competition in
Nagoya followed by yearly world championships [5]. RoboCup’s main challenge
is to develop a team of humanoid robots playing soccer that are able to defeat
the human world champion in 2050. Competitions in multiple leagues offer the
possibility to focus research on different aspects of this challenge in the different
leagues. It involves different multidisciplinary topics which are reflected and
addressed in separate leagues: the simulation league, the small size league, the
middle size league, the legged league and more recently the humanoid league.

Small-size robot league The small-size league is played on an enlarged table
tennis-sized field. Each team consists of five small robots of about 15 cen-
timeters in diameter. A camera above the field is used to get a complete
view of the game, which is sent to the computers of the teams on the side
of the field. From this image a world model is constructed using the color
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Fig. 1. Two RoboCup leagues: on the left the middle-size robots, on the right the
simulated soccer agents.

coding of the ball and the different robots. Based on this world model the
actions of the different robots are determined and sent to the robots by way
of wireless communication. Since the world model is complete and quite ac-
curate research focuses on robot coordination, team behavior and real time
control.

Middle-size robot league The robots in the Middle-size league are about 50
centimeters (1.5 feet) in diameter, see Fig. 1 (left). They compete on a field
of 10 meters long and 5 meters wide. The objects are colour coded: the ball is
orange, the goals are yellow and dark blue, the robots are black with a light
blue or pink hat, the field is green and the lines are white. The main difference
with the small-size league is that there is no global vision of the field. Visual
information is received from a camera on board of each robot. The robots can
communicate with each other by way of wireless communication. To create
cooperative team behavior robots have to know where they are on the field
and self-localization is a key issue. Currently omni-directional vision systems
that give a 360 degree view of the field are used by most teams to facilitate
self-localization.

Sony Legged robot league On a field slightly larger than the small-size league,
teams of four Sony AIBO’s (the well-known robotic toy dogs) compete. These
robots walk on four legs, and are thus the first ’step’ toward a league of biped
humanoid robots. Since every team uses the same robots, the only difference
between the teams is in the software.

Simulation league This looks like a standard computer game (see Fig. 1 (right)),
but the essential difference is that each player is its own simulated robot,
driven by its own program. Each agent has to decide on its own next move.
Because simulation frees the researchers from inherent physical limitations
of 3-dimensional robots as mechanical parts, wheel control and other func-
tions, these screen players are able to perform on a far more advanced level.
They are able to interact and cooperate, even changing play strategies from
defense to offense, or from forward to defender. A team consists of 11 players,
each of which can be either homogeneous or heterogeneous and has various
properties such as dexterity and pace. Since there is only a limited amount of



uncertainty in the information agents receive, it is relatively easy to generate
a complete and accurate world model, compared to the other leagues. This
enables the teams to concentrate on cooperative team behavior and tactics.

Key topics represented with the RoboCup challenge are

– Robot development for the different leagues, with as final goal a humanoid
robot capable of playing soccer.

– Perception of the real world from a moving platform in a dynamic scenario.
This involves both self-localization and object recognition.

– Communication and fusion of information obtained at different moments by
different robots to create a dynamic model of the world.

– Reactive behavior, to create the basic actions of the robot.
– Planning to decide what actions are optimal in a given state.
– Team coordination which involves learning and opponent modeling.

In the rest of this paper we will address several of these topics.

3 Distributed shared world models

A Shared World Model (SWM) estimates the global positions of objects in order
to reduce the uncertainty in the environment [17]. It allows for the fusing of
observations made by different agents and estimates new attributes such as the
speed of objects for extrapolation. This requires each robot to accurately localize
itself, i.e., to find its most likely position given a sequence of robot displacements
and observations. To create a distributed system robust in case of failure of an
agent, each agent computes the SWM by itself. There is no central control which
makes the system robust. The disadvantage of this is that the SWM on each agent
can differ due to different order and time of arrival of the local world models.
The higher levels in planning and coordination should be robust against these
differences.

In the RoboCup middle-size league the observations mainly consist of camera
images which are compared to a model of the environment. We have taken an
iterative approach in which after each displacement and observation the proba-
bility distribution representing the uncertainty over the current position of the
robot is updated. This probability distribution is represented by a set of candi-
date positions of the robot which are called particles [16].

The SWM is realized by first building a local world model on each agent which
tracks the position of objects relative to the agent. Second, the local world model
is sent to all agents, including itself, together with the agent’s multiple position
hypotheses: its particles. Each agent then updates its SWM by projecting the
local world models it receives on the global position of the agent which supplied
it. For this it needs to select the most likely position hypothesis of the other
agent and the certainty associated with this hypothesis. When no acceptable
match is found the local world model is discarded. Additionally, the SWM is
used to improve the position estimate of each agent. This is realized by building



on each agent an additional SWM composed only of local world models received
from other agents. By matching the local world model of the agent with this
SWM, new position candidates can be deduced. These position candidates are
used, together with the position candidates derived from the static objects (the
lines in the environments and the goals), to improve the position estimate.

In a command and control setting a visualization and interaction environment
should incorporate the shared world model. This can be the SWM of each robot
or a centralized variant in which all information is fused. The user can select
the robot he is interested in. The visualization will show the objects in this
robot’s world model alongside the camera images and localization uncertainty of
a robot. The visualization environment allows for human interaction and even
direct control of the robot, which could be presented in downscaled form on
a PDA. We developed an interactive robot 3D visualization that gives a nice
overview and provides a great experimental environment. It has provided new
insights into the behavior and limitations of the current RoboCup Middle-size
software base [8].

4 Coordinating a multi-robot team

How can intelligent real world multiagent systems cooperatively solve a task?
A multiagent (or multi-robot) system is a collection of agents that coexist in
an environment and interact with each other. We are interested in fully coop-
erative multi-robot systems in which all robots share a common goal. A shared
world model can facilitate the cooperation within such robot teams. We have
shown how to coordinate the actions of a multi-robot team by assigning roles
to the robots and applying a coordination graph to the problem [6]. Roles are
a natural way of introducing domain prior knowledge to a multiagent problem
and provide a flexible solution to the problem of distributing the global task of
a team among its members. In the soccer domain for instance one can easily
identify several roles ranging from ‘active’ or ‘passive’ depending on whether
an agent is in control of the ball or not, to more specialized ones like ‘striker’,
‘defender’, ‘goalkeeper’, etc. Such an assignment of roles provides a natural way
to parametrize a coordination structure over a continuous domain. The intu-
ition is that, instead of directly coordinating the agents in a particular situation,
we assign roles to the agents based on this situation and subsequently try to
‘coordinate’ the set of roles.

One approach to efficiently perform this coordination involves the use of a
coordination graph (CG) [2]. In this graph, each node represents an agent, and an
edge indicates that the corresponding agents have to coordinate their actions. In
order to reach a jointly optimal action, a variable elimination algorithm is applied
that iteratively solves the local coordination problems one by one and propagates
the result through the graph using a message passing scheme. In a context-
specific CG the topology of the graph is first dynamically updated based on the
current state of the world before the elimination algorithm is applied [3]. Figure 2
shows such an updated coordination for a typical RoboCup situation, where the
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Fig. 2. Coordination graph for a typical RoboCup soccer simulation situation. On the
left a coordinated defense is shown, and on the right an offense maneuver is planned.

defense and offense of the game are automatically separated by conditioning on
the context: the location of the ball.

We applied coordination graphs successfully in our RoboCup simulation team
by manually specifying both the coordination dependencies and the associated
payoffs using value rules [6]. This resulted in the world champion title in the
RoboCup-2003 soccer simulation league, illustrating that such a representation
can capture very complex and effective policies.

Recently we extended this work by allowing the agents to learn the value
of the different coordination rules [7]. We have demonstrated how Q-learning, a
well known reinforcement learning technique [15], can be efficiently applied to
such multiagent coordination problems. In many problems agents only have to
coordinate with a subset of the agents when in a certain state (e.g., two cleaning
robots cleaning the same room). We have proposed a multiagent Q-learning
technique, Sparse Cooperative Q-learning, that allows a group of agents to learn
how to jointly solve a task given the global coordination requirements of the
system.

5 Robotic planning in uncertain environments

As autonomous robots are being applied in more and more complex domains
the need grows for tractable ways of planning under uncertainty. In order for a
robot to execute its task well in a real world scenario it has to deal properly with
different types of uncertainty: a robot is unsure about the exact consequence of
executing a certain action and its sensor observations are noisy. Robotic planning
becomes even harder when different parts of the environment appear similar to
the sensor system of the robot. In these partially observable domains a robot
needs to explicitly reason with uncertainty in order to successfully carry out a
given task.

As such this planning problem can be seen as a Partially Observable Markov
Decision Process (POMDPs) [4], with several applications in operations re-
search [13], artificial intelligence [4], and robotics [12, 1, 18]. The POMDP defines



Fig. 3. Delivery task in an office environment. On the top left an example observation,
below the corresponding observation model, relating observations to states. The darker
the dot, the higher the probability. On the right example trajectories computed by
Perseus. Start positions are marked with × and the last state of each trajectory is
denoted by a 4.

a sensor model specifying the probability of observing a particular sensor reading
in a specific state, and a stochastic transition model which captures the uncertain
outcome of executing an action. In many situations a single sensor reading does
not provide enough evidence to determine the complete and true state of the
system. The POMDP framework allows for successfully handling such situations
by defining and operating on the belief state of a robot. A belief is a probability
distribution over all states and summarizes all information regarding the past.
Solving a POMDP now means computing a policy—i.e., a mapping from belief
states to actions—that maximizes the average collected reward of the robot in
the task at hand. Such a policy prescribes for every belief state the action that
maximizes the expected reward a robot can obtain in the future.

Unfortunately, solving a POMDP in an exact fashion is an intractable prob-
lem. Intuitively speaking, looking one time step deeper into the future requires
considering each possible action and each possible observation. A recent line of
research on approximate POMDP algorithms involves the use of a sampled set
of belief points on which planning is performed (see e.g., [9]). The idea is that
instead of planning over the complete belief space of the robot (which is in-
tractable for large state spaces), planning is carried out only on a limited set of
prototype beliefs that have been sampled by letting the robot interact with the
environment. We have developed along this line a simple randomized approxi-
mate algorithm called Perseus that is very competitive to other state-of-the-art
methods in terms of computation time and solution quality [14, 19].



We applied this approach to an office delivery task involving a mobile robot
with omnidirectional vision in a highly perceptually aliased office environment,
where the number of possible robot locations is in the order of hundreds. Figure 5
(left) shows the office environment, together with one of the omnidirectional cam-
era images. We have shown how Perseus can be applied to such robotic planning
problems. Robots typically have to deal with large state spaces, high dimen-
sional sensor readings, perceptual aliasing and uncertain actions. We defined a
mail delivery task in which a simulated robot has to deliver mail in an office envi-
ronment. We used PCA to project the omnidirectional camera images the robot
observes to a low-dimensional space, in order to able to handle them efficiently.
The POMDP requires a discrete observation space, thus we perform clustering in
the projected space to extract observation prototypes. We have shown our algo-
rithm can successfully solve the resulting POMDP model. Figure 5 (right) plots
two example trajectories. They show the computed policy directs the robot to
first move to the pickup states, pick up the mail, and then move to the delivery
locations in order to successfully deliver the mail.

6 Conclusions and future developments

In this paper we have reported on research on several aspects of cooperative
real world multiagent systems. In this field robot soccer can be seen as a real
scientific challenge, which is representative for the application of real world mul-
tiagent systems in practical dynamic situations. robot soccer competitions form
a platform to compare different approaches to these problems and to evaluate
them in practice.

We presented three of these problems. First the shared world model of the
robot, which fuses observations from different robots and improves their posi-
tion estimates. We presented our research on coordination within teams of robots
which focuses on the use of coordination graphs [6] and extended it by allowing
the agents to learn the value of coordination rules [7]. We described our algo-
rithm for planning in environment in which a robot is unsure about the exact
consequence of executing a certain action and in which its sensor observations
are noisy [14].

At the moment we are working on the following directions: First, we study
anytime algorithms for multiagent action selection in coordination graphs, in
particular algorithms that involve distributed message-passing techniques. Sec-
ond, we conduct experiments to determine the usefulness of humans interacting
with the team of robots through visualization in improving the accuracy of the
shared world model. Finally, we are planning to extend our work on efficient
POMDP algorithms to multiagent teams.
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