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1 Introduction

A multiagent system (MAS) consists of a group of agents that can potentially
interact with each other [2]. We are interested in fully cooperative multiagent
systems, in which the agents have to learn to select individual decisions that result
in jointly optimal decisions for the group.

In principle, a multiagent system can be regarded as one large single agent, in
which each joint action is represented as a single action. The optimal Q-values
for the joint actions can then be learned using standard single-agent Q-learning.
We will refer to this method as MDP learners. At the other extreme, we have
the independent learners (IL) approach in which the agents ignore the actions and
rewards of the other agents, and learn their strategies independently. However,
the standard convergence proof for Q-learning does not hold in this case, since the
transition model depends on the unknown policy of the other learning agents.

On the other hand, in many problems agents only have to coordinate with a
subset of the agents when in a certain state (e.g., two cleaning robots cleaning the
same room). In this paper we describe a multiagent Q-learning technique, Sparse
Cooperative Q-learning, that allows a group of agents to learn how to jointly solve
a task given the global coordination requirements of the system.

2 Sparse Cooperative Q-Learning

In our paper, we first examine a compact representation of the state-action space
in which the agents learn Q-values based on full joint actions in a predefined set
of states. In all other (uncoordinated) states, the agents learn based on their
individual action. Then we generalize this approach using a context-specific coor-
dination graph (CG) [1]. In a CG each node represents an agent, while an edge
defines a dependency between two agents. The global coordination problem is now
decomposed into a number of local problems that involve fewer agents.

In a CG, value rules can be used to specify the dependencies between the agents.
These rules define a (local) payoff for a subset of all state and action variables.
In our method, the global Q-value for a state equals the sum of the payoffs of all
applicable value rules. After every state transition, the payoff of every applicable
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Figure 1: Capture times during the first 500,000 episodes (averaged over 10 runs).

rule is updated based on a Q-learning rule that adds the contribution of all involved
agents. Effectively, each agent learns to coordinate only with its neighbors in a
dynamically changing CG. This allows for a sparse representation of the joint
state-action space of the agents, resulting in large computational savings.

3 Results

We demonstrate the proposed technique on the ‘predator-prey’ domain in which
two predators have to coordinate to capture a single prey in a 10 x 10 world.

As is seen in Fig. 1, both the IL approach and our proposed method learn
quickly in the beginning with respect to the MDP learners since learning is based
on fewer state-action pairs. However, the IL approach does not converge to a
single policy since the agents do not model the action of the other agent in the
coordinated states. These dependencies are explicitly taken into account for the
other two methods. For the MDP learners, they are modeled in every state which
results in a slowly decreasing learning curve. For the context-specific approach they
are considered only for the coordinated states, resulting in a quicker decreasing
learning curve with comparable performance to the optimal policy. Our method
thus achieves a good trade-off between speed and solution quality.
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