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Abstract.
One of the main problems in cooperative multiagent learning is that the joint ac-

tion space is exponential in the number of agents. In this paper, we investigate a sparse
representation of the joint action space in which value rules specify the coordination
dependencies between the different agents for a particular state. Each value rule has
an associated payoff which is part of the global Q-function. We will discuss a Q-
learning method that updates these context-specific rules based on the optimal joint
action found with the coordination graph algorithm. We apply our method to the pur-
suit domain and compare it with other multiagent reinforcement learning methods.

1 Introduction

A multiagent system (MAS) consists of a group of agents that can potentially interact with
each other [9]. In fully cooperative multiagent systems all agents share the same common
goal. One of the key problems in such systems is the problem of coordination: how to ensure
that the individual decisions of the agents result in jointly optimal decisions for the group.

A recent approach to solve this problem is to use context-specific coordination graphs [3]
which specify the coordination requirements of the system. Each node in the graph repre-
sents an agent and edges between the nodes indicate that the corresponding agents have to
coordinate their actions. Each agent has a set of value rules, which define an agent’s payoff
for a specific context. This context is defined as a propositional rule over state variables and
actions of that agent and its neighbors. These sets can be regarded as a sparse representation
of the complete state-action space. Using a variable elimination algorithm, the optimal joint
action can be derived corresponding to the maximal payoff for the current context.

In [4] we applied coordination graphs to coordinate a group of agents in a dynamic envi-
ronment using predefined value rules for which the payoffs were set based on a priori infor-
mation. In this paper, we investigate a method to learn the payoffs using Q-learning. We first
specify the coordination requirements of the system by creating value rules that specify in
which context certain agents have to coordinate their actions. The global Q-function is then
decomposed as the linear sum of the payoffs contained in the agents’ value rules which are ap-
plicable in the current context. During learning, these payoffs are updated using a Q-learning
update which takes the optimal joint action into account.

∗Appeared in the proceedings of IAS-8: The 8th Conference on Intelligent Autonomous Systems.



2 Coordination Graphs

A coordination graph (CG) represents the coordination requirements of a system [2]. A node
in the graph represents an agent Ai ∈ A, while an edge defines a (possible directed) depen-
dency between two agents. Only interconnected agents have to coordinate their actions. The
left graph in Fig. 1 shows a possible CG for a 4-agent problem in which agent 3, denoted by
A3, has to coordinate with A2, A4 has to coordinate with A3, and A1 has to coordinate with
both A2 and A3. If we assume that the global payoff function can be decomposed as a sum
of local payoff functions, the global coordination problem is replaced by a number of easier
local coordination problems involving fewer agents. The optimal joint action is found using
a variable elimination algorithm in combination with a message passing scheme [2].

The algorithm assumes that each agent knows its neighbors in the graph. Each agent is
‘eliminated’ from the graph by solving a local optimization problem that involves only this
agent and its neighbors: the agent collects from its neighbors all payoff functions in which
it is involved, then optimizes its decision conditionally on all possible neighbors’ decisions,
and finally communicates the resulting ‘conditional’ payoff function back to its neighbors.
A next agent is selected and the process is repeated. This continues until only one agent
remains. This last agent fixes its strategy and communicates its decision to its neighbors in
order for them to fix their strategy. This procedure repeats itself until all agents have fixed
their strategy. The outcome of this algorithm is independent of the elimination order and the
initial distribution of the rules, and always results in an optimal joint action [2].

The local payoff functions can be matrix-based [2] or rule-based [3]. In the latter case the
payoff functions are defined using ‘value rules’, which specify how an agent’s payoff depends
on the current context. The context is defined as a propositional rule over the state variables
and the actions of the agent’s neighbors. These value rules are a sparse representation of the
complete payoff matrices since not all action combinations have to be defined.

As an example, consider the case where two persons have to coordinate their actions to
pass through a narrow door. This situation is described with the value rule

〈p1 ; in-front-of-same-door(A1, A2) ∧

a1 = passThroughDoor ∧ a2 = passThroughDoor : −50〉.

This rule indicates that when the two agents are located in front of the same door and both
select the same action (passing through the door), the global payoff value is reduced by 50.
When the state is not consistent with the above rule (and the agents are not located in front of
the same door), the rule does not apply and the agents do not have to coordinate their actions.
In order to condition on the current state, each agent only needs to observe that part of the
state included in its value rules. Based on this information, it discards all irrelevant rules and
as a consequence the CG is dynamically updated and simplified.

For a more extensive example, see Fig. 1. Beneath the left graph all value rules, de-
fined over binary action and context variables1, are depicted together with the agent the rule
applies to. The coordination dependencies between the agents are represented by directed
edges, where each (child) agent has an incoming edge from the (parent) agent that affects its
decision. After the agents observe the current state, x = true, they condition on the context.

1
a1 corresponds to a1 = true and a1 to a1 = false.
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A1 〈a1 ∧ a3 ∧ x : 4〉
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A2 〈a2 ∧ x : 2〉
A3 〈a3 ∧ a2 ∧ x : 5〉
A4 〈a3 ∧ a4 ∧ x : 10〉

〈a1 ∧ a3 : 4〉
〈a1 ∧ a2 : 5〉
〈a2 : 2〉
〈a3 ∧ a2 : 5〉

Figure 1: Initial coordination graph (left) and graph after conditioning on the context x = true (right).

The rule of A4 does not apply and is removed. As a consequence, the optimal joint action is
independent of A4 and its edge is deleted from the graph as shown in the graph on the right.

After the agents have conditioned on the state variables, the agents are one by one elimi-
nated from the graph. Let us assume that we first eliminate A3 in the above example. Agent
3 first collects all rules from its children in which it is involved and then maximizes over the
rules 〈a1∧a3 : 4〉〈a3∧a2 : 5〉. For all possible actions of A1 and A2, A3 determines its best re-
sponse and then distributes this conditional strategy, in this case equal to 〈a2 : 5〉〈a1∧a2 : 4〉,
to its parent A2. After this step, A3 has no children in the coordination graph anymore and is
eliminated. The procedure then continues and after A2 has distributed its conditional strategy
〈a1 : 11〉〈a1 : 5〉 to A1, it is also eliminated. Finally, A1 is the last agent left and fixes its ac-
tion to a1. Now a second pass in the reverse order is performed, where each agent distributes
its strategy to its parents, who then determine their final strategy. This results in the optimal
joint action, {a1, a2, a3} and a global payoff of 11.

3 Markov Decision Processes and Q-learning

In this section, we review the Markov Decision Process (MDP) framework. An observable
MDP is a tuple 〈S,A,R, P 〉 where S is a finite set of world states; A is a set of actions; R :
S×A → R is a reward function that returns the reward R(s, a) obtained after taking action a

in state s and P : S ×A× S → [0, 1] is the Markovian transition function that describes the
probability P (s′|s, a) of ending up in state s′ when performing action a in state s. The Markov
property implies that the state of the world at time t provides a complete description of the
history before time t. An agent’s policy is denoted by π : S → A. The objective is to find an
optimal policy π∗ that maximizes the utility U ∗(s) = maxπ E [

∑
∞

t=0
γtR(st)|π, s0 = s] for

each state s. The expectation operator E[·] averages over reward and stochastic transitions and
γ ∈ [0, 1) is the discount factor. We can also represent this using Q-values which explicitly
store the expected discounted future reward for each state s and possible action a: Q∗(s, a) =
R(s, a) + γ

∑
s′ P (s′|s, a) maxa′ Q∗(s′, a′). At any state s, the optimal policy is obtained by

choosing an action arg maxa Q∗(s, a).
Reinforcement learning (RL) [7] can be applied to estimate Q∗(s, a). Q-learning is a

widely used learning method when the transition model is unavailable. This method starts
with an initial estimate Q(s, a) for each state-action pair. During exploration it updates the



Q-values based on the received reward and the perceived state transitions using

Q(s, a) := (1 − α)Q(s, a) + α[R(s, a) + γ max
a′

Q(s′, a′)] (1)

where α ∈ (0, 1) is the learning rate that specifies the incremental update. It can be shown
that Q(s, a) converges to the optimal Q∗(s, a) when all state-action pairs are visited infinitely
often by means of an appropriate exploration strategy [7].

Extending the above methods to multiagent systems involves several issues, e.g., whether
the agents share the same reward, whether they are allowed to communicate, whether they
model each other, etc. In our case, we assume that all agents are allowed to communicate with
each other and all receive an individual reward Ri(s, a) based on the selected joint action a in
state s. In coordinated states this reward can thus depend on the actions of the other agents.

The most direct approach to extend the MDP framework and Q-learning to a multiagent
environment is to regard the complete system as one large single agent in which the joint
action is regarded as a single action. In order to apply this approach a central controller
should communicate each agent its individual action or all agents should model the complete
MDP and select the individual action that corresponds to their own identity2. In the latter
case, no communication is needed between the agents. Although this approach leads to the
optimal solution, it is infeasible for problems with many agents since the joint action space,
which is exponential in the number of agents, becomes intractable.

A second approach is to let each agent learn its strategy independently from the other
agents and regard the other agents as part of the environment [1]. However, the convergence
proof for Q-learning does not hold in this case, since the transition model becomes dependent
on the policy of the other learning agents, making it non-stationary [10]. Despite the lack of
guarenteed convergence, the method is applied successfully in multiple cases [8, 6].

4 Q-learning in Context-Specific Coordination Graphs

We now focus on our context-specific approach. The main idea is to use a sparse repre-
sentation of the (joint) Q-values. The value rules described in section 2 offer a convenient
representation. First of all, each value rule specifies which agents have to coordinate their
actions in a specific context. Secondly, the payoff defined in each value rule can be regarded
as a local Q-value. The global Q-function then corresponds to the sum of all local Q-values
that are consistent with the current context

Q(s, a) =
n∑

j=1

Qj(s, a) (2)

where n is the number of agents, s is the current state and a is the joint action. An instantiated
Q-function Qs

i in state s corresponds to all applicable value rules in state s for player i. The
involved agents in Qs

i are denoted by Agents[Qs
i ] = {Aj ∈ A | Aj ∈ Scope[Qs

i ]}.
For example, a value rule p1 for an agent i in state s1 in which it does not have to coordi-

nate with any other agent is defined as 〈pi
1
; s1 ∧ ai : Qs1

i 〉. All action combinations with the
other agents are mapped to the rule pi

1
since we assume that the action of agent i is indepen-

dent of the actions of the other agents in s1. In this case, Agents[Qs1

i ] is thus equal to {i}. If

2The problem of exploration can be solved by using the same random number generator (and the same seed)
for all agents [9].
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Figure 2: An example situation with two predators and one prey.

in state s2 we do not make this assumption, we have to add value rules for every possible ac-
tion combination of agent i with another agent (e.g. agent k), one of which looks as follows:
〈pi

2
; s2 ∧ ai ∧ ak : Qs2

i 〉. In this case Agents[Qs2

i ] is equal to {i, k}.
The update rule used in Eq. 1 cannot be used anymore, since the global Q-value is dis-

tributed over multiple agents and each agent only stores a local Q-function corresponding to
its contribution to the global payoff. In order to update a local Q-function, we adapt Eq. 1 to

Qj(s, a) := (1−α)Qj(s, a)+α[
∑

k∈As
j

Rk(s, a)+ γ
∑

l∈A
s,s′

j

|As
j ∩ As′

l |

|As′

l |
Ql(s

′, arg max
a′

Q(s′, a′))]

(3)
where As

j = Agents[Qs
j ] and A

s,s′

j = {l ∈ A | Agents[Qs
j ] ∩ Agents[Qs′

l ] 6= ∅}. The updated
Q-function holds the future discounted reward for the involved agents. This value is updated
based on the direct received reward for all involved agents As

j and the expected discounted
future reward for the next state s′. The latter is based on the optimal joint action a′ that is
computed using the coordination graph algorithm from section 2. To determine the future
reward for the involved agents As

j we need the payoff of all value rules that are consistent
with the state s′ and the action(s) in a′ and incorporate an action of an agent in As

j . Since
an agent’s action can be listed in the value rule of any other agent l, this corresponds to the
Q-functions for which an agent in As

j is listed in As′

l . Note that l is always a neighbor in the
coordination graph and the associated Q-value can be communicated together with the final
strategy during the second pass of the variable elimination algorithm. The fraction is needed
to distribute the payoffs proportionally over the agents in case As′

l involves more agents than
As

j , e.g., when an agent moves from a non-coordinated state to a state in which it has to
coordinate with one other agent only half of the payoff is used in the update.

For an agent remaining in a non-coordinated state, this update rule is equal to Eq. 1 since
the rules are only defined over single actions and the summations thus sum over single agents.
See the next section for a detailed example.

5 Experiments

We applied our method to the well-known Predator-Prey (or Pursuit Domain) [5] in which it
is the goal of the predators to capture the prey as fast as possible in a discrete grid-like world.
We concentrate on a coordinated problem in which two predators in a 10 × 10 toroidal grid
have to capture a single prey. Each agent can move to one of its adjacent cells or remain on
its current position. The prey is captured when both predators are located in an adjacent cell



to the prey and only one of the two agents moves to the location of the prey. An example
situation is depicted in Fig. 2. When two predators move to the same cell or a predator moves
to the prey position without a nearby predator, it is penalized and placed on a random position
on the field. The policy of the prey is fixed. It stays on its current position with a probability
of 0.2. In all other cases it moves to one of the free adjacent cells with uniform probability.

To apply our approach to this problem, we initialize the first predator with a complete set
of value rules, corresponding to all possible states (predator and prey position) and possible
action combinations of the two predators. All payoffs are initialized with a value of 753. The
initial value rule corresponding to the situation in Fig. 2 looks as follows:

〈pi
1

; prey(−3,−3) ∧ pred(4, 3) ∧

ai = move none ∧ aj = move north : 75〉

Next, the specific coordination requirements between the two predators are added. Since
the predators only have to coordinate their actions when they are close to each other, we
remove the action of the second predator from the value rules in which the Manhattan distance
to the other predator is larger than two cells or one of the two predators is located more than
two cells away from the prey. For these non-coordinated states, new value rules are added
to the set of value rules for the second predator containing both this state and all possible
actions. Such a value rule looks as 〈pi

1
; prey(−3,−3) ∧ pred(4, 3) ∧ ai = move none : 75〉.

This results in the generation of 73,470 value rules for the first predator (42,270 for the
8,454 non-coordinated states and 31,200 for the 1,248 coordinated states). The second preda-
tor holds a set of 42,270 rules for the non-coordinated states. Note that in the coordinated
states the action for the second predator will be determined based on the rules from the first
predator. During learning we use Eq. (3) to update the payoffs of the rules. In all cases each
predator receives a reward of 37.5 when helping in capturing the prey and receives a nega-
tive reward of −50.0 when colliding with another predator. This relates to a global reward
of respectively 75.0 and −100.0 in the case of two agents. When moving to the prey without
support that agent receives a reward of −5.0. In all other cases the reward is −0.5. We use an
ε-greedy exploration step of 0.2, a learning rate α of 0.3, and a discount factor γ of 0.9.

We compare our method to two other Q-learning methods. First, we compare it against
the independent learners. In this case, each Q-value is derived from a state that consists of
both the position of the prey and the other predator and one of the five possible actions. This
corresponds to 48, 510 (= 99 · 98 · 5) different state-action pairs for each agent.

We also model both agents as a complete MDP with the joint action represented as a
single action. In this case, the number of state action-pairs equals 242, 550 (= 99 · 98 · 52).

Figure 3 shows the capture times for the learned policy during the first 500,000 episodes
for the different methods. The results are generated by running the current learned policy after
each interval of 500 episodes five times on a fixed set of 100 starting configurations. During
these 500 test episodes no exploration actions were performed. This complete procedure was
repeated for 10 different runs. The 100 starting configurations were selected randomly be-
forehand and were used during all 10 runs.

Both the independent learners and our proposed method learn quickly in the beginning
with respect to the MDP learners since learning is based on fewer state-action pairs. How-
ever, the independent learners do not converge to a single policy but keep oscillating. This

3The value of 75 corresponds to the maximal reward at the end of an episode. This ensures that the predators
explore all possible action combinations sufficiently.
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Figure 3: Capture times for the learned policy for the three different methods for the first
500,000 episodes. Results are averaged over 10 runs.

Method Avg. capt. time Method Avg. capt. time
Independent learners 16.86 Context-Specific Learning 12.99
Manual policy 14.43 MDP Learners 12.87

Table 1: Results of different methods after learning. All results are averaged over 5,000 episodes.

is caused by the fact that they do not take the action of the other agent into account. When
both predators are located next to the prey and one predator moves to the prey position, this
predator is not able to distinguish between the situation where the other predator remains on
its current position or performs one of its other actions. In the first case a positive reward
is returned, while in the second case a large negative reward is received. However, in both
situations the same Q-value is updated.

These coordination dependencies are explicitly taken into account in the two other ap-
proaches. In the MDP learners approach, these dependencies are taken into account for every
state which results in a slowly decreasing learning curve; it takes longer before all state-action
pairs are explored. The context-specific approach has a quicker decreasing learning curve be-
cause only joint actions are considered for these states in which the agents have to coordinate
their actions. Nevertheless, both methods result in an almost identical policy.

Table 3 shows the average capture times for the three different approaches after learning
for the last 10 test runs from Fig. 3 and a manual implementation in which both predators
first minimize the distance to the prey and then wait till both predators are located next to the
prey. When both predators are arrived, social conventions are used to determine which of the
two predators moves to the prey position.

The context-specific learning approach converges to a slightly higher capture time than
that of the MDP Learners. A possible explanation for this small difference is the fact that not
all necessary coordination requirements are added as value rules. We assume agents do not
have to coordinate when they are located far away from each other, but already coordinating



in these situations might have a positive influence on the final result. It is possible to add
these constraints as extra value rules, but that would decrease the learning time since the
state-action space would increase. The independent learners are not able to converge to a
good policy. They keep oscillating between different policies for reasons mentioned earlier.

6 Conclusions and future work

In this paper, we discussed a context-specific Q-learning approach for cooperative multiagent
systems. Value rules are used to specify the coordination requirements and can be regarded
as a sparse representation of the complete state-action space. During learning, the agents
only learn to coordinate in specified states. In all other states, single agent learning is ap-
plied. Results in the predator-prey domain show that this method improves the learning time
considerably and the final results are comparable to the optimal policy.

As future work, we would like to apply our approach to larger domains with more agent
dependencies. Furthermore, we would like to investigate methods to learn the coordination
requirements of the systems automatically.
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