
Anytime algorithms for multiagent decision

making using coordination graphs∗

N. Vlassis R. Elhorst J. R. Kok

Informatics Institute, University of Amsterdam, The Netherlands

{vlassis,reinhrst,jellekok}@science.uva.nl

Abstract – Coordination graphs provide a tractable

framework for cooperative multiagent decision making,

by decomposing the global payoff function into a sum of

local terms. In this paper we review some distributed al-

gorithms for action selection in a coordination graph,

and discuss their pros and cons. For real-time deci-

sion making, we emphasize the need for anytime algo-

rithms for action selection: these are algorithms that

improve the quality of the solution over time. We de-

scribe variable elimination, coordinate ascent, and the

max-plus algorithm, the latter being an instance of the

belief propagation algorithm in Bayesian networks. We

discuss some interesting open problems related to the use

of max-plus for real-time multiagent decision making.

Keywords: Multiagent systems, real-time systems, de-
cision making, coordination graph, variable elimination,
coordinate ascent, max-plus algorithm.

1 Introduction
Multiagent Systems (MAS) is an exciting new sub-

field of Artificial Intelligence with many theoretical and
practical challenges [11, 8]. A MAS consists of a group
of rational agents that can potentially interact with each
other. Examples include software agents on the Inter-
net, soccer playing robots (Fig. 1), electronic markets,
and many more.

In this paper we discuss the case of fully cooperative
multiagent systems where all agents share a common
goal. A key aspect in such a system is the problem
of coordination: how to ensure that the local (individ-
ual) decision making of each agent can produce globally
good solutions for the team. In principle, a central-
ized agent would suffice to solve the coordination prob-
lem: he could decide what action each individual agent
should take, and then communicate these choices to each
of them. However, such a system is not robust, since a
malfunction of the centralized agent could compromise
the performance of the whole team.

Instead, in a team MAS we would ideally like to have
decentralized coordination: the agents should decide

∗0-7803-8566-7/04/$20.00 c
�

2004 IEEE.

Figure 1: A robot soccer team is an example of a real-
time multiagent system.

what actions to take by using a distributed protocol.
Moreover, especially when real-time decision making is
in order, we would like such a protocol to be fast (with
runtime polynomial in the number of agents), robust to
communication failures, and anytime. The latter sug-
gests that we would like the quality of the solution to
improve over time, and have the agents be able to report
the best joint action found so far. After some finite time
we would like our protocol to converge to the optimal
solution.

In this paper we first review in Section 2 the frame-
work of coordination graphs (CG) for multiagent coordi-
nation, which allows for tractable representations when
the number of agents is large [1]. Then we outline three
classes of distributed algorithms for action selection in a
CG, and focus on their real-time performance. We first
discuss variable elimination, an exact method for action
selection in CGs, and argue that this method may be
inappropriate for real-time systems. In Section 3 we
discuss two anytime algorithms for multiagent coordi-
nation: a coordinate ascent algorithm where the agents
compute their individual actions in turn, and a max-
plus algorithm in which the agents exchange appropri-
ate payoff messages until a desired solution is computed.
In Section 4 we summarize all three methods and discuss
open issues for research.

PSfrag replacements

2

1

3

4

f12 f13

f34

Figure 2: A coordination graph for a 4-agents problem.

2 Coordination graphs and vari-

able elimination

We use a decision-theoretic representation to model
a coordination problem with n agents. In each time
step, each agent i chooses its individual action ai from
a set Ai, and the selected joint action a = (a1, . . . , an)
induces payoff to the team u(a). The coordination prob-
lem is to find the optimal joint action a∗ that maximizes
u(a), i.e., a∗ = arg maxa u(a). An obvious approach
would involve enumerating all possible joint actions and
selecting the one that maximizes u(a), but this is clearly
impractical: the joint action space ×iAi is exponentially
large in the number of agents n. A very large memory
would be needed just to store the payoffs, apart from
the cost of actually computing the optimal action.

It turns out that in many practical problems a com-
plete enumeration of all joint actions is unnecessary: the
payoff matrix u(a) is sparse. This insight is exploited in
the framework of coordination graphs (CG) [1]. A CG
is a graph G = (V, E) where each node in V represents
an agent, and each edge in E defines a coordination de-
pendency between two agents. An example graph with
n = 4 agents is shown in Fig. 2.

The particular structure of a CG induces a decom-
position of the global payoff function u(a) into a lin-
ear combination of local payoff functions, each involving
only few agents. For instance, in the graph of Fig. 2 the
payoff function can be written:

u(a) = f12(a1, a2) + f13(a1, a3) + f34(a3, a4). (1)

Here, f13 for instance involves only agents 1 and 3, and
for each pair of actions (a1, a3) contributes local payoff
f13(a1, a3).

In [1] an exact algorithm was proposed for finding
the optimal joint action a∗ = arg maxa u(a) in a CG.
The algorithm, called variable elimination (VE), is an
iterative maximization procedure in which agents are
eliminated one after the other from the graph.

We will illustrate VE on the above example. We start
by eliminating agent 1 in (1). We collect all local payoff
functions that involve agent 1, these are f12 and f13.

The maximum of u(a) can then be written

max
a

u(a) = max
a2,a3,a4

{

f34(a3, a4)+

max
a1

[

f12(a1, a2) + f13(a1, a3)
]

}

. (2)

Next we perform the inner maximization over the ac-
tions of agent 1. For each combination of actions of
agents 2 and 3, agent 1 must choose an action that max-
imizes f12 + f13. This results in a best-response func-
tion (conditional strategy) B1(a2, a3) for agent 1, given
the actions of agents 2 and 3. The above maximiza-
tion and the computation of the best-response function
of agent 1 define a new payoff function φ23(a2, a3) =
maxa1

[f12(a1, a2) + f13(a1, a3)] that is independent of
a1. Agent 1 has been eliminated. The maximum (2)
becomes

max
a

u(a) = max
a2,a3,a4

[

f34(a3, a4) + φ23(a2, a3)
]

. (3)

We can now eliminate agent 2 as we did with agent 1.
In (3), only φ23 involves a2, and maximization of
φ23 over a2 gives the best-response function B2(a3) of
agent 2 which is a function of a3 only. This in turn
defines a new payoff function φ3(a3), and agent 2 is
eliminated. Now we can write

max
a

u(a) = max
a3,a4

[

f34(a3, a4) + φ3(a3)
]

. (4)

Agent 3 is eliminated next, resulting in B3(a4) and
a new payoff function φ4(a4). Finally, maxa u(a) =
maxa4

φ4(a4), and since all other agents have been elim-
inated, agent 4 can simply choose an action a∗

4 that
maximizes φ4(a4).

The above procedure computes an optimal action only
for the last eliminated agent (assuming that the graph is
connected). For the other agents it computes only con-
ditional strategies. A second pass in the reverse elimina-
tion order is needed so that all agents compute their op-
timal (unconditional) actions from their best-response
functions. Thus, in the above example, plugging a∗

4 into
B3(a4) gives the optimal action a∗

3 of agent 3. Simi-
larly, we get a∗

2 from B2(a
∗
3) and a∗

1 from B1(a
∗
2, a

∗
3),

and thus we have computed the joint optimal action
a∗ = (a∗

1, a
∗
2, a

∗
3, a

∗
4). Note that one agent may have

more than one best-response actions, in which case the
first action can be chosen according to an a priori order-
ing of the actions of each agent that must be common
knowledge.

There are two limitations of VE that we are address-
ing here. First, the algorithm can be slow in certain
cases, as it is exponential in the induced width of the
graph (the size of the largest clique computed during
node elimination). In the worst case VE scales exponen-
tially in n. Second, VE may not always be appropriate
for real-time multiagent systems where decision making

must often be done under time constraints: typically,
there is a deadline after which the payoff of the agents
becomes zero. One example is robot soccer, where each
agent has a relatively small amount of time available
for deliberation. In these cases, an anytime algorithm
would be more appropriate, one that improves the qual-
ity of the solution over time and eventually (given suf-
ficient time) it computes the optimal solution.

3 Anytime algorithms for action

selection in CGs

We describe here two classes of anytime algorithms
for action selection in CGs, as alternatives to variable
elimination, that are more appropriate for real-time sys-
tems.

3.1 Coordinate ascent

A simple anytime algorithm for action selection is a
coordinate ascent (CA) with random restarts. Initially,
each agent chooses its individual action, for instance
randomly or using some local heuristics, resulting in a
joint action a(0). At time step t, all agents fix their
actions except for (a randomly selected) agent i. Us-
ing (1), this agent computes its conditional payoff func-

tion u(ai|a
(t)
−i), where a

(t)
−i refers to the vector of fixed

actions of all agents except agent i. Then agent i maxi-

mizes u(ai|a
(t)
−i) over its individual actions ai, produc-

ing a
(t+1)
i . This action then replaces a

(t)
i in a(t) to

give a(t+1), another agent is selected, and so on, un-
til u(a(t+τ)) does not improve anymore. The latter is
a local maximum of the payoff function u(a). If more
time is available, another starting configuration a(0) is
randomly selected and the above algorithm is repeated.
When the deadline expires, the joint action with the
highest payoff is reported.

Note that, by construction, the payoff function u(a)
increases in each step of the algorithm, and therefore the
resulting algorithm is anytime. Moreover, the graphical
representation of (1) suggests a message passing scheme
for action updating: after an agent computes a new in-
dividual action, it communicates this information only
to its immediate neighbors in the graph. This way, a
global solution can be computed by only local interac-
tions. CA has been used in [2], in a problem involving
global payoff functions with local constraints.

The CA algorithm constitutes an efficient, anytime
algorithm that admits a distributed implementation. In
many practical problems it can compute the optimal
solution (or get very close to it) in a fraction of the
time that VE takes. In Fig. 3 we show some results
comparing CA with VE in randomly generated graphs.

However, in general it is difficult to provide guaran-
tees on the behavior of CA. Depending on the shape of
the function u(a), CA may need many random restarts

to reach the global maximum of u(a). A more sophisti-
cated approach would be to search for the optimal joint
action using a population of candidate configurations,
properly selected in each optimization step via evolu-
tionary techniques [6].

3.2 The max-plus algorithm

The max-plus algorithm is analogous to the sum-
product or belief propagation algorithm used for in-
ference in graphical models [7, 5, 9, 10]. It is easy to
see that action selection in a CG is equivalent to com-
puting the maximum a posteriori (MAP) configuration
in an (unnormalized) undirected graphical model de-
fined through a set of potential functions as in (1). In
the max-plus algorithm—when viewed in the context
of multiagent coordination—the agents exchange mes-
sages with each other, where each message can be re-
garded as a local payoff function. A nice property of
max-plus is that upon convergence, and depending on
the structure of the graph, the optimal joint action can
be computed by only local computations. In the sequel
we follow [9], translating their results into our multia-
gent decision making problem.

Suppose that we have n agents, and a coordination
graph G = (V, E) with V vertices and E edges that
defines a payoff function as:

u(a) =
∑

(i,j)∈E

fij(ai, aj). (5)

Here (i, j) denotes a pair of neighboring agents (an edge
in G), and fij is a local payoff function that maps a pair
of actions (ai, aj) to a real number fij(ai, aj). In each
time step, each agent i (node in G) sends a message µij

to each of its neighbors j ∈ Γ(i), where µij is a (local)
payoff function that maps an action aj of agent j to a
real number µij(aj). We further define:

gi =
∑

j∈Γ(i)

µji,

gij = fij +
∑

k∈Γ(i)\j

µki +
∑

k∈Γ(j)\i

µkj ,

where the notation Γ(i) \ j means all neighbors of node
i except node j.

Then we can easily show (by direct substitution) that
if we have reached a ‘fixed point’ where the communi-
cated messages among the agents do not change any-
more, then the set of local payoff functions gi, gij define
a reparametrization of the original payoff function:

u(a) =
∑

i∈V

gi +
∑

(i,j)∈E

(gij − gi − gj). (6)

Moreover, suppose that this fixed point has been
reached by messages defined as follows:

µij(aj) = max
ai

{

fij(ai, aj) +
∑

k∈Γ(i)\j

µki(ai)
}

. (7)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time/time needed for VE algorithm

pa
yo

ff/
m

ax
im

um
 p

ay
of

f

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time/time needed for VE algorithm

pa
yo

ff/
m

ax
im

um
 p

ay
of

f

Figure 3: Comparing CA with VE on randomly generated graphs: maximum payoff computed by CA (relative to
VE) vs. runtime of CA (relative to VE). Left: 800 loosely connected agents. Right: 13 densely connected agents.
CA computes solutions close to optimal in a fraction of the time that VE needs.

Then, we can easily verify that the following consistency
property holds:

gi(ai) = max
aj

gij(ai, aj) (8)

where j is an arbitrary neighbor of i.
From the above, the following important results fol-

low [7, 9]. When the graph G is cycle-free (a tree), then
max-plus always converges after a finite number of steps
to a fixed point of the above message passing procedure.
In this case, for the local functions gi, gij holds:

gi(ai) = max
{a′|a′

i
=ai}

u(a′),

gij(ai, aj) = max
{a′|(a′

i
,a′

j
)=(ai,aj)}

u(a′).

Moreover, if the (locally) maximizing action a∗
i =

arg maxai
gi(ai) is unique for all i, then the (globally)

maximizing action a∗ = arg maxa u(a) is also unique
and has elements a∗ = (a∗

i) computed by only local op-
timizations (each node maximizes gi(ai) separately). If
the local maximizers are not unique, an optimal joint
action can still be computed by a straightforward dy-
namic programming technique [9, sec. 3.1].

The importance of the above result is that a difficult
global optimization problem is transformed to a set of
easy local optimization problems, one for each agent, us-
ing local message passing. Under the conditions stated
above, this automatically defines an anytime algorithm:
assuming that each agent can evaluate u(a) for any a,
the anytime solution is formed by the best (in terms
of u) vector of local maximizers a∗

i = argmaxai
gi(ai)

found so far. According to the above, after a finite num-
ber of steps we are guaranteed to find the optimal joint
action.

In graphs with cycles, the above result does not hold
anymore, and there no guarantees that either max-
plus will converge or that the local maximizers a∗

i =
arg maxai

gi(ai) will correspond to the global optimum.
In [9] it was shown that a fixed point of message passing
exists in graphs with cycles, but there is no known algo-
rithm yet that can provably converge to such a solution.
Yet, bounds are available that characterize the quality
of the max-plus solution if the algorithm converges [9].

4 Discussion and conclusions

We reviewed the framework of coordination graphs
(CG) for multiagent coordination, and described the
three existing algorithms for action selection in a CG,
variable elimination, coordinate ascent, and the max-
plus algorithm.

Variable elimination (VE) computes a solution by two
passes over the graph. In the forward pass, agents are
successively eliminated from the graph, until one agent
is left for which decision making is easy. A second pass
in the reverse elimination order is then employed to en-
sure that each agent computes its component of the op-
timal joint action. VE can be shown to converge al-
ways to the exact solution independent on the particu-
lar elimination order, and it can be effective in loosely
connected graphs. Its worst case runtime complexity is,
however, exponential in the number of agents involved
in the graph, and therefore it can be slow in densely
connected graphs. Moreover, VE is not appropriate for
real-time systems as it requires that both passes finish
before a solution can be reported.

Coordinate ascent (CA) with random restarts is a
very simple method in which each agent optimizes its
own action only, given that the actions of all other

agents remain fixed. This is repeated for all agents it-
eratively, until a local maximum of the payoff function
has been reached. A new initial configuration is then
chosen, and the process is repeated. The method is
very effective in practice, and it can be implemented in
a distributed fashion [2]. CA will compute the optimal
joint action in the limit of an infinite number of random
restarts, but it is difficult to characterize its speed of
convergence on arbitrary graphs.

Finally, the max-plus algorithm is an instance of
the max-product or belief propagation algorithm in
Bayesian networks [7, 10]. It involves repeated passing
of messages over the graph, each message being a local
payoff function for the agent that receives the message.
Due to its asynchronous nature, the algorithm is par-
ticularly appropriate for real-time multiagent systems.
Moreover, strong theoretical results exist for the origi-
nal algorithm and its variants, like global optimality in
the case of cycle-free graphs and the existence of fixed
points in arbitrary graphs. However, there is no message
passing schedule yet that is provably convergent.

We see a few interesting open issues for further re-
search, in particular related to the use of the max-plus
algorithm. First, it would be useful to further charac-
terize the anytime behavior of the algorithm, even in
graphs without cycles. For instance, it would be useful
to have a message passing schedule that would ensure
a monotone (and/or fast) increase of the global payoff
value in each step. The results that we mentioned above
guarantee that in cycle-free CGs, under mild conditions,
max-plus will converge to the optimal joint action, but
we would like to ensure high speed of convergence on
the average.

A second issue is related to the convergence of max-
plus on arbitrary graphs, which is an open problem. In
recent work [10], a ‘reweighted’ version of max-plus has
been proposed, that exhibits better convergence behav-
ior than the original algorithm and for which stronger
theoretical results can be formulated. It will be inter-
esting to further investigate the applicability of these
algorithms in the context of multiagent coordination.

Finally, another line of research would be to link a
message passing algorithm like max-plus with sequential
decision making tasks, like Markov decision processes or
reinforcement learning [1, 4]. From an application point
of view, it would be interesting to test some of the above
methods on large-scale problems like robot soccer [3].

Acknowledgments

We thank Carlos Guestrin and Taylan Cemgil for
helpful discussions. This research is supported by
PROGRESS, the embedded systems research program
of the Dutch organization for Scientific Research NWO,
the Dutch Ministry of Economic Affairs and the Tech-
nology Foundation STW, project AES 5414.

References
[1] C. Guestrin, D. Koller, and R. Parr. Multiagent

planning with factored MDPs. In Advances in Neu-

ral Information Processing Systems 14. The MIT
Press, 2002.

[2] G. İnalhan, D. M. Stipanović, and C. J. Tom-
lin. Decentralized optimization with application to
multiple aircraft coordination. In Proc. IEEE Int.

Conf. on Decision and Control, Las Vegas, Nevada,
2002.

[3] J. R. Kok, M. T. J. Spaan, and N. Vlassis. Multi-
robot decision making using coordination graphs.
In Proc. 11th Int. Conf. on Advanced Robotics,
Coimbra, Portugal, June 2003.

[4] J. R. Kok and N. Vlassis. Sparse cooperative Q-
learning. In Proc. 21st Int. Conf. on Machine

Learning, Banff, Canada, July 2004.

[5] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger.
Factor graphs and the sum-product algorithm.
IEEE Trans. on Information Theory, 47:498–519,
2001.

[6] H. Mühlenbein and T. Mahnig. FDA – a scalable
evolutionary algorithm for the optimization of ad-
ditively decomposed functions. Evolutionary Com-

putation, 7:353–376, 1999.

[7] J. Pearl. Probabilistic Reasoning in Intelligent Sys-

tems. Morgan Kaufman, San Mateo, 1988.

[8] N. Vlassis. A concise introduction to multia-
gent systems and distributed AI. Informatics
Institute, University of Amsterdam, Sept. 2003.
http://www.science.uva.nl/˜vlassis/cimasdai.

[9] M. Wainwright, T. Jaakkola, and A. Willsky. Tree
consistency and bounds on the performance of
the max-product algorithm and its generalizations.
Technical report, P-2554, LIDS-MIT, 2002.

[10] M. Wainwright, T. Jaakkola, and A. Will-
sky. MAP estimation via agreement on (hy-
per)trees: Message-passing and linear program-
ming approaches. Technical report, UCB/CSD-03-
1269, UC Berkeley, 2003.

[11] G. Weiss, editor. Multiagent Systems: a Mod-

ern Approach to Distributed Artificial Intelligence.
MIT Press, 1999.

