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1 Introduction

A multiagent system (MAS) consists of a group of agents that interact which each other [4]. In
such systems agents act individually, but the outcome of their actions might differ based on the
behavior of the other agents. In this paper, we focus on a cooperative MAS problem in which each
agent selects an individual action ai and the resulting joint action a = (ai) should maximize the
global payoff function u(a).

Fortunately, many MAS problems exhibit the property that each agent only depends on a small
subset of the other agents, e.g., those who are spatially close. Coordination graphs (CG) [1] is a
framework for multiagent coordination in which u(a) is decomposed into a linear combination of
local payoff functions, each involving only a few agents. In order to determine the optimal joint
action a that maximizes u(a), a variable elimination (VE) algorithm was proposed in [1]. This
method operates by iteratively eliminating an agent after performing a local maximization step
that involves an enumeration of all possible action combinations of its neighbors. Although VE is
exact and always produces the optimal joint action, it scales exponentially in the number of agents
for densely connected graphs. Moreover, it is not appropriate for real-time systems as it requires
that the complete algorithm terminates before a solution can be reported. In this paper we describe
the max-plus algorithm as an approximate alternative to VE.

2 Max-Plus Algorithm

The max-plus algorithm [3], analogous to the belief propagation (BP) or sum-product algorithm
in Bayesian networks, is a method for computing the maximum a posteriori (MAP) configuration
in an undirected graphical model. We apply max-plus as an approximate alternative to VE for
multiagent decision making. Suppose that we have a coordination graph G = (V,E) with |V |
vertices and |E| edges. The global payoff function u(a) can be decomposed as

u(a) =
∑

i∈V

fi(ai) +
∑

(i,j)∈E

fij(ai, aj). (1)

Here fi(ai) denotes the payoff for the action ai of agent i and fij is a payoff function that maps
the actions (ai, aj) of two neighboring agents (i, j) ∈ E to a real number fij(ai, aj). The goal is to
find the optimal joint action a∗ that maximizes (1).

Each agent i repeatedly sends a message µij to its neighbors j ∈ Γ(i) where µij maps an action
aj of agent j to a real number as follows:

µij(aj) = max
ai

{

fi(ai) + fij(ai, aj) +
∑

k∈Γ(i)\j

µki(ai)
}

+ cij , (2)

1Appeared in the Proceedings of the 17th Belgian-Dutch Conference on Artifical Intelligence (BNAIC’05).
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Figure 1: Payoff and timing results for graph with 15 agents and 10 actions.

in wich Γ(i) \ j are all neighbors of agent i except agent j and cij is a normalization vector. This
message can be understood as an approximation of the maximum payoff agent i can achieve for
every action of agent j, and is computed by maximizing (over the actions of agent i) the sum of the
payoff functions fi and fij and all incoming messages to agent i except that from agent j. Messages
are exchanged until they converge. If, at convergence, we define gi(ai) = fi(ai) +

∑

j∈Γ(i) µji(ai),

we can show that gi(ai) = max{a′|a′

i
=ai} u(a′). Each agent i now selects its optimal action a∗

i =
arg maxai

gi(ai). If there is one maximizing action for every agent i, the global optimal joint action
a∗ = arg maxa u(a) is unique and has elements a∗ = (a∗

i ).
Note that this global optimal joint action is computed by only local optimizations (each node

maximizes gi(ai) separately). In case the local maximizers are not unique, an optimal joint action
can be computed by a dynamic programming technique [5, sec. 3.1].

3 Results

Max-plus converges to the optimal solution for trees. Unfortunately, no convergence guarantees
exist for graphs with cycles, although it has been successfully applied in such settings. This is also
shown in Fig. 1, which shows the average results for our anytime max-plus algorithm, in which we
report the best action found so far, on 3000 generated graphs with 15 agents and an increasing
number of edges. Payoffs are generated using a normal distribution N (0, 1).

4 Conclusions

We presented the max-plus algorithm as an approximate alternative to VE. It can be implemented
fully distributed and outperforms VE for densely connected graphs. These features make it an
appropriate action selection technique for real-time cooperative systems.
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