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Abstract

Within a group of cooperating agents the decision making of an individual agent
depends on the actions of the other agents. In dynamic environments, these depen-
dencies will change rapidly as a result of the continuously changing state. Via a
context-specific decomposition of the problem into smaller subproblems, coordina-
tion graphs offer scalable solutions to the problem of multiagent decision making.
In this work, we apply coordination graphs to a continuous (robotic) domain by
assigning roles to the agents and then coordinating the different roles. Moreover,
we demonstrate that, with some additional assumptions, an agent can predict the
actions of the other agents, rendering communication superfluous. We have suc-
cessfully implemented the proposed method into our UvA Trilearn simulated robot
soccer team which won the RoboCup-2003 World Championship in Padova, Italy.
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1 Introduction

A multiagent (multi-robot) system is a group of agents that coexist in an
environment and can interact with each other in several different ways in
order to optimize a performance measure (1). Research in multiagent systems
aims at providing principles for the construction of complex systems containing
multiple independent agents and focuses on behavior management issues (e.g.,
coordination of behaviors) in such systems.
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We are interested in fully cooperative multiagent systems in which all agents
share a common goal. A key aspect in such systems is the problem of coor-
dination: the process that ensures that the individual decisions of the agents
result in jointly optimal decisions for the group. In principle game theoretic
techniques can be applied to solve the coordination problem (2), but this ap-
proach requires reasoning over the joint action space of the agents, whose size
is exponential in the number of agents. For practical situations involving many
agents, modeling n-person games becomes intractable. However, the particu-
lar structure of the coordination problem can often be exploited to reduce its
complexity.

A recent approach to decrease the size of the joint action space involves the
use of a coordination graph (CG) (3). In this graph, each node represents an
agent, and an edge indicates that the corresponding agents have to coordinate
their actions. In order to reach a jointly optimal action, a variable elimination
algorithm is applied that iteratively solves the local coordination problems
one by one and propagates the result through the graph using a message
passing scheme. In a context-specific CG (4) the topology of the graph is
first dynamically updated based on the current state of the world before the
elimination algorithm is applied.

In this work we will describe a framework to coordinate multiple robots using
coordination graphs. We assume a group of robotic agents that are embedded
in a continuous and dynamic domain and are able to perceive their surround-
ings with sensors. The continuous nature of the state space makes the direct
application of context-specific CGs difficult. Therefore, we appropriately ‘dis-
cretize’ the continuous state by assigning roles to the agents (5) and then,
instead of coordinating the different agents, coordinate the different roles. It
turns out that such an approach offers additional benefits: the set of roles not
only allows for the definition of natural coordination rules that exploit prior
knowledge about the domain, but also constrains the feasible action space
of the agents. This greatly simplifies the modeling and the solution of the
problem at hand.

Furthermore, we will describe a method that, using some additional common
knowledge assumptions, allows an agent to predict the optimal action of its
neighboring agents, making communication unnecessary. Finally, we work out
an extensive example in which we apply coordination graphs to the RoboCup
simulated soccer domain.

The setup is as follows: in Section 2 we review the coordination problem from
a game-theoretic perspective, and in Section 3 we explain the concept of a
coordination graph. In Section 4 we will describe our framework to coordi-
nate agents in a continuous dynamic environment using roles without using
communication. This is followed by an extensive example in the RoboCup soc-
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thriller comedy

thriller 1, 1 0, 0

comedy 0, 0 1, 1

Fig. 1. An example coordination game.

cer simulation domain in Section 5. We end with our conclusions and discuss
possible further extensions in Section 6.

2 The coordination problem

In order to place the coordination problem in a broader context, we will first
review it from a game theoretic point of view. A strategic game (2) is a tuple
〈n,A1..n, R1..n〉 where n is the number of agents, Ai is the set of actions of
agent i and Ri is the payoff function for agent i. This payoff function maps
the selected joint action A = A1 × ...×An to a real value: Ri(A)→ IR. Each
agent independently selects an action from its action set, and then receives a
payoff based on the actions selected by all agents. The goal of the agents is to
select, via their individual decisions, the most profitable joint action.

In this work we are interested in fully cooperative strategic games, so-called
coordination games, in which all agents share the same payoff function R1 =
. . . = Rn = R. Fig. 1 shows a graphical representation of a coordination
game between two agents. The rows and columns correspond to the possible
actions of respectively the first and second agent, while the entries contain
the returned payoff for the corresponding joint action. Without knowing the
choice of the other agent, each agent can choose between two types of movies,
either a thriller or a comedy. The agents have to coordinate their actions in
order to maximize their payoff since choosing the same movie results in a
payoff of 1 for both agents, while choosing a different movie will provide them
zero payoff.

A fundamental solution concept in strategic games is the Nash equilibrium
(2; 6). It defines a joint action a∗ ∈ A with the property that for every agent
i holds Ri(a

∗

i , a
∗

−i) ≥ Ri(ai, a
∗

−i) for all actions ai ∈ Ai, where a−i is the joint
action for all agents excluding agent i. Such an equilibrium joint action is
a steady state from which no agent can profitably deviate given the actions
of the other agents. For example, the strategic game in Fig. 1 has two Nash
equilibria corresponding to the situations where both agents select the same
type of movie.

Another fundamental concept is Pareto optimality. An action a∗ is Pareto
optimal if there is no other joint action a for which Ri(a) ≥ Ri(a

∗) for all
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agents i and Rj(a) > Rj(a
∗) for at least one agent j. That is, there is no

other outcome that makes every player at least as well off and at least one
player strictly better off. There are many examples of strategic games where a
Pareto optimal solution is not a Nash equilibrium and vice versa (e.g., in the
famous prisoner’s dilemma (2)). However, in coordinated games such as the
one depicted in Fig. 1 each Pareto optimal solution is also a Nash equilibrium
by definition.

Formally, the coordination problem can be seen as the problem of selecting one
single Pareto optimal Nash equilibrium 1 in a coordination game (1). This can
be accomplished using several different methods (7): using communication,
learning, or by imposing social conventions. In the first case an agent can
inform the other agent of its action, restricting the choice of the other agents
to a simplified coordination game. If in the movie example the first agent would
notify the other agent that it will select the comedy, the coordination game
is simplified to the second row which contains only one equilibrium. Secondly,
learning can be used when the strategic game is played repeatedly. Each agent
makes predictions about the actions of the other players based on the previous
interactions and chooses its action accordingly. This approach has received
much attention over the past several years (7; 8; 9). Finally, social conventions
are constraints on the action choices of the agents. It can be regarded as a
rule to select one of all the possible equilibria. As long as this convention is
common knowledge among the agents, no agent can benefit from not abiding
it. This general, domain-independent method will always result in an optimal
joint action and moreover, it can be implemented offline: during execution the
agents do not have to explicitly coordinate their actions, e.g., via negotiation.
For instance, we can create a lexicographic ordering scheme in which we first
order the agents and then the actions in our previous example. Assuming the
ordering ‘1 Â 2’ (meaning that agent 1 has priority over agent 2) and ‘thriller
Â comedy’, the second agent can derive from the social conventions that the
first agent will select the thriller and will therefore also choose the thriller.

In the above cases we assume that all equilibria can be found and coordination
is the result of each individual agent selecting its individual action based on the
same equilibrium. However, the number of joint actions grows exponentially
with the number of agents, making it infeasible to determine all equilibria
in the case of many agents. This calls for methods that first reduce the size
of the joint action space before solving the coordination problem. One such
approach, explained next, is based on the use of a coordination graph that
captures local coordination requirements between agents.

1 In the rest of this article, we denote a Pareto optimal Nash equilibrium simply
by equilibrium, unless otherwise stated.
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Fig. 2. An example coordination graph for a 4-agent problem.

3 Coordination graphs

In systems where multiple agents have to coordinate their actions, it is infea-
sible to model all possible joint actions since this number grows exponentially
with the number of agents. Fortunately, most problems exhibit the property
that each agent only has to coordinate with a small subset of the other agents,
e.g., in many robotic applications only robots that are close to each other have
to coordinate their actions. A recent approach to exploit such dependencies in-
volves the use of a coordination graph (CG), which represents the coordination
requirements of a system (3).

The main assumption is that the global payoff function R(a) can be decom-
posed into a linear combination of local payoff functions, each involving only a
few agents. For example, suppose that there are four agents and the following
decomposition of the payoff function:

R(a) = f1(a1, a2) + f2(a1, a3) + f3(a3, a4).

The functions fi specify the local coordination dependencies between the ac-
tions of the agents and can be graphically depicted as in Fig. 2. A node in this
graph represents an agent, denoted by Ai, while an edge defines a (possible
directed) dependency between two agents. Only interconnected agents have
to coordinate their actions at any particular instance. In the decomposition of
R(a), A2 has to coordinate with A1, A4 has to coordinate with A3, A3 has to
coordinate with both A4 and A1, and A1 has to coordinate with both A2 and
A3. The global coordination problem is thus replaced by a number of local
coordination problems each involving fewer agents.

In order to solve the coordination problem and find the optimal joint action
a∗ that maximizes R(a), we can apply a variable elimination algorithm, which
is almost identical to variable elimination in a Bayesian network (3; 10). The
main idea is that the agents are eliminated one by one after performing a local
maximization step which takes all possible action combinations of an agent’s
neighbors into account.

The algorithm operates as follows. One agent is selected for elimination, and it
collects all payoff functions from its neighbors. Next, this agent optimizes its
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decision conditionally on the possible action combinations of its neighbors and
communicates the resulting ‘conditional’ payoff function back to its neighbors.
This conditional strategy is independent of this agent, which is then eliminated
from the graph. The process continues with the next agent and ends when all
but the last agent are eliminated. This agent simply chooses the individual
optimal action that maximizes the final conditional strategy. A second pass
in the reverse order is then needed so that all agents can determine their
optimal action based on their conditional strategies and the fixed actions of
their neighbors in the graph.

As an example, we first eliminate agent 1 in the aforementioned decomposition.
This agent first collects the local payoff functions f1 and f2 and then only has
to maximize over f1 + f2 in order to maximize R(a). This can be written as

max
a

R(a) = max
a2,a3,a4

{

f3(a3, a4) + max
a1

[f1(a1, a2) + f2(a1, a3)]
}

. (1)

Agent 1 now creates a new payoff function f4(a2, a3) = maxa1
[f1(a1, a2) +

f2(a1, a3)] that returns the value corresponding to its best-response for the
possible action combinations of agent 2 and agent 3. This function f4 is inde-
pendent of agent 1 and this agent is eliminated from the graph. The problem
is now simplified to

max
a

R(a) = max
a2,a3,a4

[f3(a3, a4) + f4(a2, a3)]. (2)

We now apply the same procedure to eliminate agent 2. In this case, only f4

depends on the action of agent 2 and is replaced by the function f5(a3) =
maxa2

f4(a2, a3) producing

max
a

R(a) = max
a3,a4

[f3(a3, a4) + f5(a3)]. (3)

which is independent of a2. Next, we eliminate agent 3 by replacing the func-
tions f3 and f5 with f6(a4) = maxa3

[f3(a3, a4) + f5(a3)] giving maxa R(a) =
maxa4

f6(a4). Agent 4 now selects its optimal action given this propagated
conditional strategy. A second pass in the reverse elimination order is per-
formed in which each agent fixes it strategy based on its conditional strategy
and the communicated actions from its neighbors. See (3; 1) for more details.

The local payoff functions fi can be matrix-based (3) as in Section 2 or rule-
based (4). In the latter case the payoff rules are defined using ‘value rules’,
which specify how an agent’s payoff depends on the current context. The
context is defined as a propositional rule over the state variables and the
actions of the agent’s neighbors. These rules can be regarded as a sparse
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A1 A1

A2A2 A3A3

A4 A4

A1 〈a1 ∧ a3 ∧ x : 4〉
〈a1 ∧ a2 ∧ x : 5〉

A2 〈a2 ∧ x : 2〉
A3 〈a3 ∧ a2 ∧ x : 5〉
A4 〈a3 ∧ a4 ∧ x : 10〉

〈a1 ∧ a3 : 4〉
〈a1 ∧ a2 : 5〉
〈a2 : 2〉
〈a3 ∧ a2 : 5〉

Fig. 3. Initial coordination graph (left) and graph after conditioning on the context
x = true (right).

factorized representation of the complete payoff matrices since they are only
specified for a context with non-zero payoff.

More formally, let A1, . . . , An be a group of agents, where each agent Aj has
to choose an action aj ∈ Aj resulting in a joint action a ∈ A = A1 × ...×An

and let X be a set of discrete state variables. The context c is then an element
from the set of all possible combinations of the state and action variables,
c ∈ C ⊆ X ∪ A. A value rule 〈 p ; c : v〉 ∈ P is a function p : C → IR such
that p(x, a) = v when c = (x, a) is consistent with the current context and
0 otherwise. For a particular situation only those value rules contribute to
the global payoff R(a) that are consistent with the current context: R(a) =
∑m

i=1
pi(x, a) where m is the total number of value rules and x and a are

respectively a state and joint action.

As an example, consider the case where two persons have to coordinate their
actions to pass through a narrow door. We describe this situation using the
following value rule:

〈p1 ; in-front-of-same-door(1, 2) ∧

a1 = passThroughDoor ∧

a2 = passThroughDoor : −50〉

This rule indicates that when the two agents are located in front of the same
door and both select the same action (passing through the door), the global
payoff value will be reduced by 50. When the state is not consistent with the
above rule (and the agents are not located in front of the same door), the
rule does not apply and the agents do not have to coordinate their actions.
By conditioning on the current state the agents discard all irrelevant rules,
and as a result the CG is dynamically updated and simplified. Note that for
the conditioning step each agent only needs to observe that part of the state
mentioned in its own value rules.
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For a more extensive example, see Fig. 3. Below the left graph all value rules,
defined over binary action and context variables 2 , are depicted together with
the agent the rule applies to. The coordination dependencies between the
agents are represented by directed edges, where each (child) agent has an
incoming edge from the (parent) agent that affects its decision. After the
agents observe the current state, x = true, they condition on the context. The
rule of A4 does not apply and is removed. As a consequence, the optimal joint
action is independent of the action of A4 and the edge to A4 is deleted from
the graph as shown in the right graph of Fig. 3. In this case, A4 can thus select
either action without affecting the global reward R(a).

After the agents have conditioned on the state variables, the agents are one
by one eliminated from the graph. Let us assume that we first eliminate A3 in
the above example. Agent 3 first collects all rules from its children in which
it is involved and then maximizes over the rules 〈a1 ∧ a3 : 4〉〈a3 ∧ a2 : 5〉.
For all possible actions of A1 and A2, A3 determines its best-response and
then distributes the corresponding conditional strategy, in this case equal to
〈a2 : 5〉〈a1 ∧ a2 : 4〉, to its parent A2. Now a new directed edge from A1 to
A2 is generated, since A2 receives a rule containing an action of A1. After this
step, A3 has no children in the coordination graph anymore and is eliminated.
The procedure continues and after A2 has distributed its conditional strategy
〈a1 : 11〉〈a1 : 5〉 to A1, it is also eliminated. Finally, A1 is the last agent left
and fixes its action to a1. Now a second pass in the reverse order is performed,
in which each agent distributes its strategy to its parents, who then determine
their final strategy. This results in the optimal joint action {a1, a2, a3, a4} and
a global payoff of 11. Note that {a1, a2, a3, a4} is also an optimal joint action.
It depends on the individual action choice of A4 which joint action is selected.

The outcome of the variable elimination algorithm is independent of the elim-
ination order and the initial distribution of the rules and will always result
in an optimal joint action (3). However, the execution time of the algorithm
does depend on the elimination order. In the table-based approach the cost
of the algorithm is linear in the number of new functions introduced (3). In
the rule-based approach the cost is polynomial in the number of new rules
generated in the maximization operation (4). This number is never larger and
often exponentially smaller than the complexity of the table-based approach 3 .
Computing the optimal order for minimizing the mentioned runtime costs is
known to be NP-complete (11), but good heuristics exists, e.g., minimum de-
ficiency search which first eliminates the agents with the minimum difference
between incoming and outgoing edges (12; 13).

2 The action a1 corresponds to a1 = true and the action a1 to a1 = false.
3 Do note that the rule-based approach involves an extra cost regarding the man-
agement of the sets of rules, causing its advantage to manifest primarily in problems
with a fair amount of context specific dependencies (4).
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Fig. 4. Graphical representation of the soccer field.

A limitation of the described coordination approach is that it is based on
propositional rules and therefore only applies to discrete domains. Next, we
will show how to utilize this framework in continuous dynamic environments.

4 Dynamic continuous environments

We are interested in problems that involve multiple robots that are embedded
in a continuous domain, have sensors with which they can observe their sur-
roundings, and need to coordinate their actions. As a main example we will
use the RoboCup simulation soccer domain (14). The Robot Soccer World
Cup (RoboCup) is an international research initiative that uses the game of
soccer as a domain for artificial intelligence and robotics research. The soccer
server (15) is the basis for the simulation competition. It provides a fully dis-
tributed dynamic multi-robot domain with both teammates and adversaries
and models many real-world complexities such as noise in object movement,
noisy sensors and actuators, limited physical ability and restricted communi-
cation. One team is represented by eleven different computer processes that
independently interact with the simulator in order to fulfill their common goal
of scoring more goals than their opponent. A graphical representation of the
complete field modeled by the soccer server is shown in Fig. 4.

Depending on the current situation, certain agents on the field have to coordi-
nate their actions, for example the agent that controls the ball must coordinate
with its surrounding teammates in order to perform a pass and the defend-
ers must coordinate how to position themselves with respect to each other to
cover as much space as possible.

Such dependencies can be modeled by a CG that satisfies the following re-
quirements: (i) its connectivity should be dynamically updated based on the

9



current (continuous) state, (ii) it should be sparse in order to keep the depen-
dencies and the associated local coordination problems as simple as possible,
(iii) it should be applicable in situations where communication is unavailable
or very expensive.

In the remainder of this section, we will concentrate on the two main features
of our proposed method, designed to fulfill the requirements mentioned above.
The first is the assignment of roles to the agents in order to apply coordination
graphs to continuous domains and to reduce the action sets of the different
agents; the second is to predict the chosen action of the other agents, rendering
communication superfluous.

4.1 Context-specificity using roles

Conditioning on a context that is defined over a continuous domain is difficult
in the original rule-based CG representation. A way to ‘discretize’ the context
is by assigning roles to agents (5; 16; 17; 1). Roles are a natural way of intro-
ducing domain prior knowledge to a multiagent problem and provide a flexible
solution to the problem of distributing the global task of a team among its
members. In the soccer domain for instance one can easily identify several
roles ranging from ‘active’ or ‘passive’ depending on whether an agent is in
control of the ball or not, to more specialized ones like ‘striker’, ‘defender’,
‘goalkeeper’, etc.

In (18) a role is defined as an abstract specification of the set of activities an
individual or subteam undertakes in service of the team’s overall activity. In
our framework a role m ∈M defines this set of activities as a set of value rules
Pm. In the original rule-based CG each agent has only one set of value rules,
which then would have to include all rules for all roles. Now, based on the
given role assignment only a subset of all value rules applies which simplifies
the coordination graph. Furthermore, the value rules in Pm pose additional
constraints on the role of other agents contained in the value rules, reducing
the edges in the coordination graph even further. For instance, agent i in role
‘goalkeeper’ who controls the ball and considers to pass the ball to any of the
agents j in role ‘defender’ could result in the following value rule:

〈pgoalkeeper
1 ; has-role-defender(j) ∧ ai = passTo(j) : 10〉, ∀j 6= i.

An assignment of roles to agents provides a natural way to parametrize a
coordination structure over a continuous domain. The intuition is that, instead
of directly coordinating the agents in a particular situation, we assign roles
to the agents based on this situation and subsequently try to ‘coordinate’ the
set of roles. The other roles {m′} ∈M \m mentioned in the set of value rules
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Pm for role m define a coordination subgraph structure on M . As such, the
assigned roles induce a coordination graph between all agents, each executing
a certain role.

A question which remains is how roles are assigned to agents. In this section
we describe the communication based case, which we can exploit to use a
distributed role assignment algorithm (5; 16; 1). In the next section, we will
concentrate on the situation in which communication is unavailable.

The role assignment algorithm, which is common knowledge among the agents,
defines a sequence M ′ of roles where |M ′| ≥ n which represents a preference
ordering over the roles: the most ‘important’ role is assigned to an agent first,
followed by the second most important role, etc. By construction, the same
role can be assigned to more than one agent, but each agent is assigned only a
single role. Each role m has an associated potential rim which is a real-valued
estimate of how appropriate agent i is for the role m in the current world
state. These potentials rim depend on features of the state space relevant for
role m as observed by agent i. For example, relevant features for role ‘striker’
could be the time needed to intercept the ball or the global position on the
field. Each agent computes its potential for each m ∈ M ′ and sends these to
the other agents. Now the first m ∈ M ′ is assigned to the agent that has the
highest potential for that role. This agent is no longer under consideration,
the next m is assigned to another agent, and so on, until all agents have been
assigned a role. This algorithm requires sending O(|M |n) messages, as each
agent has to send each other agent its potential rim for all m ∈ M ′.

The roles can be regarded as an abstraction of a continuous state to a discrete
context, allowing the application of existing techniques for discrete-state CGs.
Furthermore, roles can reduce the action space of the agents by ‘locking out’
specific actions. For example, the role of the goalkeeper does not include the
action ‘score’, and in a ‘passive’ role the action ‘shoot’ is deactivated. Such a
reduction of the action space can offer computational savings, but more impor-
tantly it can facilitate the solution of a local coordination game by restricting
the joint action space to a subspace that contains less Nash equilibria.

4.2 Non-communicating agents

For the role assignment each agent has to communicate its potential for a
certain role to all other agents. Furthermore, the variable elimination requires
that each agent receives the payoff functions of its neighboring agents, and
after computing its optimal conditional strategy communicates a new payoff
function back to its neighbors. Similarly, in the reverse process each agent
needs to communicate its decision to its neighbors in order to reach a coordi-
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nated joint action.

In many practical dynamic situations, the agents may not be able to com-
municate with all neighbors (or have the time to finalize all communication
before selecting an action) due to failures or time constraints. However, when
communication is unavailable the variable elimination algorithm can still be
applied if we further impose the requirement that the payoff function of an
agent i is common knowledge among all agents that are reachable from i in
the CG. Since only agents that are reachable in the CG need to coordinate
their actions, the above requirement in fact frees agents from having to com-
municate their local payoff functions during optimization.

The complete procedure is now as follows. In order to determine the role
assignment, each agent computes in parallel the potential rim that reflects how
appropriate agent i is for the role m = 1, . . . , n. This is done by calculating
the potential rim for all agents i located in its subgraph. Then the actual
assignment of roles to agents is equal to the procedure described in Section 4.1.
During the noncommunicative role assignment, each agent calculates O(|M |n)
potentials and thus runs in time polynomial in the number of agents and
roles. This in contrast to the communicating case where each agent only has
to compute O(|M |) potentials but in total O(|M |n) potentials have to be
communicated.

In a context-specific CG, each agent 4 performs an additional conditioning step
using the state variables to simplify the graph structure. In the communication
case, each agent has to observe those state variables that are represented in
its own value rules. As a consequence, each agent also has to observe the
state variables of the agents located in its subgraph when communication is
unavailable.

In order to perform the variable elimination algorithm, agent i starts with
eliminating itself and keeps removing agents until it computes its own optimal
action unconditionally on the actions of the others. In the worst case, agent
i needs to eliminate all agents j 6= i, for j reachable from i. Each agent thus
runs the complete algorithm by itself in order to determine its own action. The
main difference with the communicating case is with respect to the reverse
pass. When multiple best-response actions contribute the same local value
to the global payoff, the eliminated agent could choose (at random) which
action to choose in the communication case. Without communication, we have
to ensure that the different agents select the same action by imposing the
additional constraint that the ordering in the actions sets of the agents is
common knowledge.

4 Note that when we refer to an agent in the remainder of this section, we assume
this agent is assigned a role and is coordinating with other roles (as discussed in
the previous section).
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In the noncommunicative case the elimination order neither has to be fixed in
advance nor has to be common knowledge among all agents as in (3), but each
agent is free to choose any elimination order, for example, one that allows the
agent to quickly compute its own optimal action. This is possible because a
particular elimination order affects only the speed of the algorithm and not
the computed joint action as described earlier.

In terms of complexity, the computational costs for each individual agent are
clearly increased to compensate for the unavailable communication. Instead
of only optimizing for its own action, in the worst case each agent has to
calculate the action of every other agent in the subgraph. The computational
cost per agent increases thus linearly with the number of new payoff func-
tions generated during the elimination procedure. Communication, however,
is not used anymore which allows for a speedup since these extra individual
computations may now run in parallel. This is in contrast to the original CG
approach where computations need to be performed sequentially.

In summary, we can apply the CG framework without using communication
when all agents are able to run the same algorithm in parallel. For this, we
have to make the following assumptions:

• the payoff functions of an agent i are common knowledge among all agents
reachable from i,

• each agent i can compute the potential rim for all agents i in its subgraph,
• the action ordering is common knowledge among all agents,
• for the context-specific CG all agents reachable from i also observe the state

variables located in the value rules of agent i.

Finally, we note that the common knowledge assumption is strong and even in
cases where communication is available it cannot always be guaranteed (19). In
multiagent systems without communication common knowledge can be guar-
anteed if all agents consistently observe the same world state, but this is also
violated in practice due to partial observability of the environment (a soccer
player has a limited field of view). In our case, when the agents have to agree on
a particular role distribution given a particular context, the only requirement
we impose is that the role assignment in a particular local context is based on
those parts of the state that are, to a good approximation, fully observable by
all agents involved in the role assignment. For example, in a soccer game the
particular role assignment may require that in a group of coordinating agents
observe the position of each other in the field, as well as the positions of their
nearby opponents, and have a rough estimate of the position of the ball (e.g.,
knowing that the ball is far away). As long as such a context is encountered,
a local graph is formed which is disconnected from the rest of the CG and can
be solved separately.
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5 Experiments

We have applied the aforementioned framework in our simulation robot soc-
cer team UvA Trilearn (20). The main motivation was to improve upon the
coordination during ball passes between teammates. First of all, we have con-
ducted an experiment in which a complete team strategy was specified using
value rules and each player selected its action based on the result of the vari-
able elimination algorithm. In this case we made the world fully observable for
all agents and used no communication between the agents. Furthermore, we
incorporated this framework in our competition team, which participated in
the RoboCup-2003 World Championships. For this we made some necessary
modifications since during competition the world is only partially observable.
Both approaches will be explained next in more detail.

5.1 Fully observable, non-communicating team

In this section we will explain how we have constructed a complete team
strategy using the value rules from the CG framework. We assume that the
world is fully observable 5 such that each agent can model the complete CG
algorithm by itself as explained in Section 4.2. This is necessary since the
RoboCup soccer simulation does not allow agents to communicate with more
than one agent at the same time, which makes it impossible to apply the
original variable elimination algorithm. This has no effect on the outcome
of the algorithm. Furthermore, we used the synchronization mode to ensure
that the simulator only proceeds to the next cycle when all the actions of
the players are received. This to make sure no action opportunities are lost
because of the computation time of the algorithm.

In order to accomplish coordination, all agents first perform the role assign-
ment which maps each agent to one of the following ordered sequence of roles

M ′ = {active, receiver, receiver, passive, passive,

passive, passive, passive, passive, passive}.

There are four possible roles. The first and most important role is that of the
active player which performs an action with the ball. We distinguish between
two different types of roles, interceptor and passer, depending whether the
ball can be kicked by the active player or not. Next, we assign the two roles

5 This is a configuration setting in the soccer server.
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of possible ball receivers. The remaining seven players are assigned the role of
passive player. Note that we disregard the goalkeeper for simplicity.

The corresponding potentials for each role are specified as follows:

• The potential ri,active for the active player is equal to 1/ti where ti > 0 is the
predicted time it will take player i to intercept the ball. For this, we use the
modification of Newton’s Method as described in (21). This method finds
the least root (equal to the first possible interception time) of the function
that represents the difference between the traveled distance of the ball and
the movement of the player i. The actual role, passer or interceptor, that
is assigned to the agent depends on the relative distance to the ball. When
the ball is close enough to be kicked, the agent is assigned the role of passer,
otherwise the role of interceptor.

• The potential for the role of receiver is based on the relative distance di,b to
the ball and the relative distance to the opponent goal di,g for player i.

ri,receiver =















1/max(1, di,g) + 1 if di,b < k

1/max(1, di,g) otherwise
. (4)

This function simply states that there is a preference for agents that are
located close to the opponent goal. Furthermore, an additional reward is
given when the ball is within a range of k = 28 meters to player i 6 . This
has the effect that agents that are outside this range are only taken into
consideration for passing when there is no nearby alternative.

• The potential ri,passive for the role of passive player is a constant such that
all remaining agents are assigned to this role.

The role assignment function is recomputed after every new observation and
as a consequence the graph structures changes dynamically as the state of the
world changes. A common example of a role assignment is depicted in Fig. 5,
where the agent with the ball is a passer, the two players in range of the passer
are receivers and the other players are passive. This assignment of roles defines
the structure of the coordination graph. By construction an agent in a passive
role always performs the same individual action, namely, moving towards its
strategic position. This drastically simplifies the coordination graph since there
are no dependencies between the passive agents.

Now the coordination structure is known, all connected agents apply the elim-
ination algorithm to determine their actions. For this, we have to define the
value rules that consist of both state and action variables. First, we will give
an overview of the different actions available to each agent.

6 After this distance the ball has not much speed left when shot with maximal
velocity.
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Fig. 5. A situation involving one passer and two possible receivers. The other agents
are passive.

• passTo(i, dir): pass the ball to a position with a fixed distance from agent i
in the direction dir ∈ D = {center, n, nw,w, sw, s, se, e, ne}. The direction
parameter specifies a direction relative to the receiving agent. ‘North’ is
always directed toward the opponent goal and ‘center’ corresponds to a
pass directly to the current agent position,

• moveTo(dir): move in the direction dir ∈ D,
• dribble(dir): move with the ball in direction dir ∈ D,
• score: shoot to the best spot in the opponent goal (22),
• clearBall: shoot the ball hard between the opponent defenders to the op-

ponent side,
• moveToStratPos: move to the agent’s strategic position based on its home

position and the position of the ball which serves as an attraction point.

All mentioned actions are available in the released parts of the source code
of our UvA Trilearn 2003 team 7 . A more detailed description of how these
actions are transformed into primary actions is given in (20).

We also defined (boolean) state variables that extract important (high-level)
information from the world state:

• is-pass-blocked(i, j, dir) indicates whether a pass from agent i to agent j is
blocked by an opponent or not. The actual position to which is passed is
the position at a small fixed distance from agent j in direction dir. A pass
is blocked when there is at least one opponent located within a cone from
the passing player to this position.

• is-empty-space(i, dir), indicates that there are no opponents within a small
circle in the specified direction dir of agent i.

• is-in-front-of-goal(i) indicates whether agent i is located in front of the op-
ponent goal.

7 This fully documented source code release is freely available from our website:
http://www.science.uva.nl/~jellekok/robocup/.
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Using these action and state variables, we can define the complete strategy of
our team by means of value rules which specify the contribution to the global
payoff in a specific context. The value rules are specified for each player i and
make use of the above defined actions and state variables 8 .

〈pinterc.
1

; intercept : 10〉

〈ppasser
2 ; has-role-receiver(j) ∧

¬isPassBlocked(i, j, dir) ∧

ai = passTo(j, dir) ∧

aj = moveTo(dir) : u(j, dir) ∈ [5, 7]〉 ∀j 6= i

〈ppasser
3 ; is-empty-space(i, n) ∧

ai = dribble(n) : 2〉

〈ppasser
4 ; ai = clearBall : 0.1〉

〈ppasser
5 ; is-in-front-of-goal(i) ∧

is-ball-kickable(i) ∧

ai = score : 10〉

〈preceiver
6

; has-role-interceptor(j) ∧

¬isPassBlocked(j, i, dir) ∧

aj = intercept ∧

ai = moveTo(dir) : u(i, dir) ∈ [5, 7]〉 ∀j 6= i

〈preceiver
7

; has-role-receiver(k) ∧

¬isPassBlocked(k, i, dir) ∧

aj = passTo(k, dir2) ∧

ak = moveTo(dir2) ∧

ai = moveTo(dir) : u(i, dir) ∈ [5, 7]〉 ∀j, k 6= i

〈preceiver
8

; moveToStratPos : 1〉

〈ppassive
9 ; moveToStratPos : 1〉

The first five rules are related to the action options for the active player. The
first rule, p1, indicates that intercepting the ball is the only option when per-
forming the interceptor role. As a passer, there are several alternatives. Value
rule p2 represents an active pass to the relative direction dir of player j which
can be performed when there are no opponents along that trajectory and the
receiving agent will move in that direction to intercept the coming pass. The
value that is contributed to the global payoff is returned by u(j, dir) and de-
pends on the position where the receiving agent j will receive the pass (the

8 Note that we enumerate all rules using variables. The complete list of value rules is
the combination of all possible instantiations of these variables. In all rules, dir ∈ D.
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closer to the opponent goal the better). The next three rules indicate the other
individual options for the active player: dribbling (we only allow forward drib-
bling), clearing the ball and scoring. Rule p6 indicates the situation in which
a receiver already moves to the position it expects the current interceptor to
pass the ball to when it reaches the ball. Using the same principle, we can
also create more advanced dependencies. For example, rule p7 indicates that
a receiver can already move to a position it will expect the receiver of another
pass to shoot the ball to. Rule p8 describes the situation in which a receiving
player moves to its strategic position on the field. This action is only executed
when it is not able to coordinate with one of the other agents, since it has only
a small global payoff value. Finally, rule p9 contains the single action option
for a passive player that always moves to its strategic position.

When the nine basic rules are instantiated, the total number of value rules
equals 204. We illustrate that even with such a rather small set of rules a com-
plete (although simple) team strategy can be specified that makes explicit use
of coordination. Furthermore, the rules are easily interpretable which makes it
possible to add prior knowledge into the problem. Another advantage is that
the rules are very flexible: existing rules can directly be added or removed.
This makes it possible to change the complete strategy of the team when
playing different kinds of opponents.

We will now look into an example of how the above rules are put into prac-
tice. The above rules contain a lot of context-dependencies represented in the
state variables. In Fig. 5 we already simplified the coordination graph by as-
signing roles to the agents, if we now condition further on the specific state
variables, we get the graph depicted in Fig. 6, corresponding to the following
applicable value rules (we assume for simplicity that only the state variables
¬isPassBlocked(1, 2, s) and ¬isPassBlocked(2, 3, nw) are true):

A1 : 〈ppasser
2 ; a1 = passTo(2, s) ∧

a2 = moveTo(s) : 6〉

〈ppasser
3 ; a1 = dribble(n) : 2〉

〈ppasser
4 ; a1 = clearBall : 0.1〉

A2 : 〈preceiver
8

; a2 = moveToStratPos : 1〉

A3 : 〈preceiver
7

; a1 = passTo(2, dir) ∧

a2 = moveTo(dir) ∧

a3 = moveTo(nw) : 5〉 ∀dir ∈ D

〈preceiver
8

; a3 = moveToStratPos : 1〉

Now the variable elimination algorithm can be performed. Each agent is elim-
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Fig. 6. The coordination graph at Fig. 3 after conditioning on the state variables.
The passer (agent 1) decides to pass the ball to the first receiver (agent 2), while
the second receiver (agent 3) moves to a good position for the first receiver to pass
the ball to.

inated from the graph by maximizing its local payoff. In the case that agent
1 is eliminated first, it gathers all value rules that contain a1, maximizes its
local payoff and distributes its conditional strategy consisting of the generated
value rules

〈ppasser
10 ; a2 = moveTo(s) ∧

a3 = moveTo(nw) : 11〉

〈ppasser
11 ; a2 = moveTo(s) ∧

a3 = ¬moveTo(nw) : 6〉

〈ppasser
12 ; a2 = ¬moveTo(s) : 2〉

to its parents. Note that ppasser
10 is formed by combining ppasser

2 and preceiver
7

when both agent 2 and 3 fulfill the listed actions. When agent 3 performs a
different action, the payoff is still 6 when agent 2 moves south as is stated
in ppasser

11 . When agent 2 also performs a different action, the only remaining
action is the dribble with a payoff of 2. After agent 2 and 3 have also fixed their
strategy, agent 1 will perform passTo(2, s), agent 2 will execute moveTo(s) to
intercept the pass and agent 3 will perform moveTo(nw) to intercept a possible
future pass of agent 2. During a match, this procedure is executed after each
update of the state and the agents will change their action based on the new
information. If in this example for some unpredicted reason the first pass fails,
the graph will automatically be updated and correspond to the new situation.

To test this approach, we played games against ourselves, with one team using
explicit coordination and the other team without using any coordination dur-
ing passing. The latter case was modeled by deleting the rules p6, p7 from the
list of value rules and removing the condition aj = moveTo(dir) from rule p2

to indicate that it is not necessary for the receiver to anticipate the pass. Now,
in the non-coordinating case a teammate moves to the interception point only
after he has observed a change in the ball velocity (after someone has passed
the ball) and concludes that it is the fastest teammate to the ball. Before the
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Fig. 7. Mean and standard deviation of several statistics for the three tested teams.
All results are averaged over 10 matches.

ball changes velocity, it has no notion of the fact that it will receive the ball
and does not coordinate with the passing player. Furthermore, we also played
matches against a benchmark version of our team in which the strategy was
identical to our basic client implementation 9 . In this team the active player
would intercept the ball and immediately kick it with maximal velocity to a
random corner of the opponent goal. The implementation of the kick and the
intercept are identical to the two other teams, with the result that the three
teams only differ with respect to their (high-level) strategy.

Since many different factors contribute to the overall performance of the team,
it is difficult to measure the actual effect of the coordination with one single
value. Therefore, we have concentrated on multiple statistics generated by the

9 This is the same behavior as the released UvA Trilearn 2003 source code. Quali-
fication for RoboCup-2003 was based on the performance of the teams against the
2002 version of this release.
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Fig. 8. The time (ms) needed for the elimination algorithm given the number of
value rules that are applicable in the current context.

Statistics Proxy Server tool (23). Fig. 7(a) and Fig. 7(b) show the game statis-
tics for the coordinating and the non-coordinating team against the bench-
mark team averaged over 10 full-length games. These results show that both
teams are able to defeat the benchmark team with considerable goal differ-
ence on all occasions (respectively 12.4 − 0 and 10.6 − 0). In Fig. 7(c) these
statistics are directly compared with each other indicating that the coordi-
nating team slightly outperforms the non-coordinating team. Fig. 7(d) shows
the same statistics in the case the coordinating team plays against the non-
coordinating team. In this setting, the coordinating team won 8 out of the
10 matches, drew one, and lost one. The average score was 5.2− 2.6. Almost
all statistics show a performance improvement for the coordinating team. For
example, the successful passing percentage was 94.55% for the team with the
CG and 79.76% for the team without. These percentages indicate that due
to the better coordination of the teammates, fewer mistakes were made when
the ball was passed between teammates. This also has a positive effect on
the other statistics, e.g., number of shots on goal and the location of the ball
on the field. The only statistic in which the non-coordinating team (slightly)
outperforms the coordinating one is in ball possession. After each failed attack
the non-coordinating team has ball possession and can progress toward the op-
ponent field without much difficulty. There are less attackers than defenders,
so even when not explicitly coordinating it was possible to find a free team-
mate to pass to. This all counted as ball possession for the non-coordinating
team. However, when reaching the opponent side, it became more difficult to
find a free teammate because of the increased number of opponent players.
As a result passing became more difficult and in many cases the ball was lost
and the coordinating team could start their attack from the midfield. Since it
is easier to keep ball possession when having to move the ball forward from
your own backfield than to keep it when attacking from the midfield, the ball
possession percentage is slightly higher for the non-coordinating team.

Table 1 shows the timing results for the different stages of the framework
during the matches of the coordinating team against the non-coordinating
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Stage Computation time (ms) Nr. of samples

Initialization 7.15 ( ± 4.45 ) 100

Role assignment 0.16 ( ± 0.24 ) 602,865

CG Role Passive 0.01 ( ± 0.002) 472,108

CG Role Interceptor 0.01 ( ± 0.002) 45,950

CG Role Receiver

Condition step 3.94 ( ± 4.74 ) 72,307

Elimination step 34.87 ( ± 72.15 ) 72,307

Nr of applicable rules 25.69 ( ± 29.34 ) 72,307

CG Role Active

Condition step 4.15 ( ± 4.61 ) 12,500

Elimination step 48.93 ( ± 96.83 ) 12,500

Nr. of applicable rules 27.69 ( ± 30.65 ) 12,500

Table 1
Average computation times (in ms) for the different stages of the algorithm. Results
are generated on a 1.5 GHz computer with 512 MB. The results are combined for
all players’ actions over the course of 10 full-length games and are averaged over all
players.

team. For the non-coordinating team, the time to determine an action was
approximately 3 ms in total for both the receiver and the passer. More time
is needed for the coordinating team. This is mainly caused by the compu-
tation performed during the variable elimination algorithm. On average the
time needed for determining an action was 25.69 ms for the receivers. The
time needed for computation is strongly related to the number of applicable
value rules for a certain situation. On average approximately 25 value rules
were applicable after conditioning on the context. However, situations occured
in which considerable more value rules were applicable. In these cases, the
computation time also increased considerably. Fig. 8 shows the relationship
between the number of value rules and the computation time. As the number
of applicable value rules increases, the best-response function has to take more
combinations of value rules into account, slowing down the computation.

5.2 Partially observable, non-communicating team

We participated in the RoboCup-2003 competition with our UvA Trilearn
team. This team used the framework and value rules described in the previous
section to determine its high-level strategy. However, In order to participate
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in the competition, we had to adapt the framework for (i) the partially ob-
servability of the domain and (ii) the real-time requirements of the simulator
(100 ms per cycle).

The common knowledge assumption about the fully observable state cannot
be made during competition since every agent only receives information of the
part of the field to which its neck is oriented. However, the coordination graph
structure specifies which parts of the state are relevant for coordination, i.e.,
the neighbors in the graph and their associated state variables. Therefore, we
adjust the looking mechanism of the agents to actively orient their neck to
the part of the field in which its neighbors in the graph are located and then
assume that this part of the world is common knowledge among these agents.
When all involved agents observe this information they can independently
solve the local graph which is disconnected from the rest of the CG and so
compensate for the missing state information. In our example, the passer and
the receivers thus change their looking direction to their neighbors in the graph
in order to get a good approximation of the relevant part of the state needed
for coordination and are not interested in the passive players which are not
connected to its subgraph.

In order to comply with the real-time complexities of the simulator, the timing
results of the previous section have to be improved. On average a single player
has approximately 10 ms in order to determine its action using our synchro-
nization scheme (20). Therefore, we included an additional preprocessing step
during the conditioning in which for each of the nine basic rules and for each
possible receiver only the value rule was kept that gave the highest reward.
For example, a pass in the northern direction to a receiver has always prece-
dence over a pass in southern direction and therefore we can remove the value
rule related to the southern pass. In this case, we can afford to do so since
we know that these coordinated passes are independent of the actions of the
other agents. This reduces the number of value rules and makes sure that the
agents are able to keep their computation time within the given constraints.

Finally, in order to improve the actual performed pass, we did not directly map
the returned high-level actions from the CG algorithm to a primary action as
in the previous Section. Instead, given the returned receiver and direction,
we evaluated multiple passes for different angles and different speeds in that
direction using the modification of Newton’s method (21) and selected the
action that maximized the capture time between the receiver and the fastest
opponent. This procedure can be regarded as a two-layered hierarchy in which
a high-level action based on the global coordination situation is refined to a
specific action which takes the local situation into account.

Using this approach, we were able to win the RoboCup-2003 World Cham-
pionships in Padova, Italy, for which 46 teams had qualified. During the 16
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matches played, UvA Trilearn had a total goal difference of 177 − 6. In the
final we defeated TsinghuAeolus, the winner of 2001 and 2002, with a score
of 4 − 3. The successful passing percentage was 91.43% for our team against
82.87% for TsinghuAeolus.

5.3 Related Work

Two other coordination structures are Cohen and Levesque’s joint intentions
theory (24; 25) and the SharedPlan theory (26). The first is based on the
notion that a joint action by a group of agents is more than the union of the
simultaneous individual actions, even if those actions are coordinated. In order
to act, a team must also be aware and care about the status of the group. A
joint intention is a joint commitment to perform an action together. In contrast
with joint intentions, the SharedPlan theory is not based on a joint mental
state, but rather on two different kinds of intentions. An agent can intend to
do some action or he can intend that some proposition holds. The first type
is directed towards the agent’s individual action, while the intention that is
used for things like contemplating about sub-plans or helping teammates. The
latter are defined via a set of axioms that specify for an agent which actions to
take in order to facilitate its teammates, subteam or team to perform assigned
tasks (26).

Tambe presents an implemented general model of flexible teamwork called
STEAM (18). This framework uses joint intentions as the basic building blocks
of teamwork, but as in the SharedPlan theory team members build up a com-
plex hierarchical structure of joint intentions, individual intentions and beliefs
about other team member’s intentions.

All three methods assume the agents form a team dynamically and commu-
nicate with each other extensively to negotiate with each other until the goal
is reached. In (17) the notion of a locker-room agreement is introduced that
facilitates coordination with little or no communication. This agreement pro-
vides a mechanism for pre-defining multiagent protocols that are accessible to
the whole team, with the consequence that during execution the agents act
autonomously, while still working towards a common goal. Furthermore, it is
assumed that the agents can periodically synchronize their agreements during
periods of unlimited and safe communication. This can be compared to our
common knowledge (social conventions) assumptions about the value rules of
the reachable agents in the graph which make communication superfluous.

The notion of roles we use is similar to the ones described in (17; 16; 5).
In these settings, any agent has the knowledge about different roles which
specify an agent’s internal and external behaviors. Agents can at any time
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switch between the different roles based on external events or after negotiation.
In these cases, coordination is the result of the different agents performing
subtasks corresponding to their assigned role. In our case, the role assignment
also defines the coordination structure, but next the CG framework is applied
in order to coordinate the individual actions of the agents.

6 Conclusions and future work

We proposed two extensions to the framework of coordination graphs (3) for
the cases where the agents are embedded in a continuous domain and/or
communication is unavailable.

We assigned roles in order to abstract from the continuous state to a discrete
context, allowing the application of existing techniques for discrete-state CGs.
The role assignment specifies the coordination requirements between the dif-
ferent agents which is used by the CG framework in order to find the optimal
combination of individual actions. This approach is based on value rules that
specify the kind of coordination for a specific context. This approach is very
flexible, since existing rules can directly be added or removed. This makes it
possible to change the complete strategy of the team when playing different
kinds of opponents.

Furthermore, we showed that we can dispense with communication if addi-
tional assumptions about common knowledge are introduced. This makes it
possible to model the reasoning process of the other agents, making commu-
nication unnecessary.

Currently, the payoff values in the value rules are based on prior knowledge as-
sumptions. As future work, we are interested in applying reinforcement learn-
ing techniques to a continuous-domain CG in order to learn the payoff func-
tions in an automatic fashion.

Finally, from an application point of view we want to apply the CG model
further to our team such that the agents also coordinate during other actions
than passing, like organizing the defense or obstructing opponent passes. In
order to accomplish this, we have to investigate how this method scales to
bigger problems with a larger set of value rules.
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