
Using the Max-Plus Algorithm for Multiagent

Decision Making in Coordination Graphs?

Jelle R. Kok and Nikos Vlassis

Informatics Institute, University of Amsterdam, The Netherlands
{jellekok,vlassis}@science.uva.nl

Abstract. Coordination graphs offer a tractable framework for coop-
erative multiagent decision making by decomposing the global payoff
function into a sum of local terms. Each agent can in principle select an
optimal individual action based on a variable elimination algorithm per-
formed on this graph. This results in optimal behavior for the group, but
its worst-case time complexity is exponential in the number of agents,
and it can be slow in densely connected graphs. Moreover, variable elim-
ination is not appropriate for real-time systems as it requires that the
complete algorithm terminates before a solution can be reported. In this
paper, we investigate the max-plus algorithm, an instance of the belief
propagation algorithm in Bayesian networks, as an approximate alter-
native to variable elimination. In this method the agents exchange ap-
propriate payoff messages over the coordination graph, and based on
these messages compute their individual actions. We provide empirical
evidence that this method converges to the optimal solution for tree-
structured graphs (as shown by theory), and that it finds near optimal
solutions in graphs with cycles, while being much faster than variable
elimination.

1 Introduction

A multiagent system (MAS) consists of a group of agents that interact which
each other [1, 2]. In such systems agents act individually, but the outcome can
differ based on the behavior of the other agents. In this paper, we concentrate
on cooperative MASs in which the agents try to optimize a shared performance
measure and have to ensure that their selected individual actions result in good
team behavior. RoboCup [3] is a good example of a cooperative (or team) MAS in
which the agents also have to deal with time constraints since the soccer-playing
robots have to coordinate their actions in real-time in order to win.

A recently introduced framework for multiagent coordination is the concept
of coordination graphs (CG) [4], which allows for a tractable representation of
the coordination problem. In this framework, payoff functions between subsets of
the agents are specified that represent local coordination dependencies between
the agents. In order to determine the optimal joint action that maximizes the

? Appeared in the Proceedings of the 9th International RoboCup Symposium.

sum of the local payoffs, a variable elimination (VE) algorithm was proposed
in [4]. We applied CGs and VE to our UvA Trilearn RoboCup Simulation team,
which won the RoboCup-2003 World Championship [5]. However, although VE is
exact and always produces the optimal joint action, it can be slow in certain cases
and in the worst case scales exponentially in the number of agents for densely
connected graphs. In previous work [6], we compared two different alternatives to
VE. In this paper we will concentrate further on the max-plus algorithm, which
is analogous to the belief propagation algorithm [7–9] for Bayesian networks,
as an approximate alternative to VE. In this method, the agents repeatedly
exchange payoff messages on which they base their individual action selection.
In this paper, we provide empirical evidence that this method converges to the
optimal solution for tree-structured graphs and also show that it finds near
optimal solutions in densely connected graphs with cycles, while being much
faster than VE. These results make this framework interesting for domains as
RoboCup where real-time decision making in a group of distributed cooperative
agents is of great importance.

2 Coordination Graphs and Variable Elimination

In this section we will review the problem of computing a coordinated action for
a group of n agents using the variable elimination (VE) algorithm [4]. Each agent
chooses an individual action ai from a set Ai, and the resulting joint action a =
(a1, . . . , an) generates a payoff u(a) for the team. The coordination problem is
to find the optimal joint action a∗ that maximizes u(a), i.e., a∗ = arg maxa u(a).
An obvious approach is to enumerate all possible joint actions and select the one
that maximizes u(a). However, this approach quickly becomes impractical, since
the joint action space ×iAi grows exponentially with the number of agents n.

Fortunately, many problems exhibit the property that the payoff matrix u(a)
is sparse. Each agent only depends on a small subset of the other agents, e.g., in
robotic soccer only robots that are close to each other have to coordinate their
actions. A recent approach to exploit such dependencies involves the use of a
coordination graph [4], which decomposes the global payoff function u(a) into a
linear combination of local payoff functions, each involving only a few agents. For
example, a payoff function involving four agents can be decomposed as follows:

u(a) = f12(a1, a2) + f13(a1, a3) + f34(a3, a4). (1)

The functions fij specify the local coordination dependencies between the actions
of the agents and can be mapped to a graph G = (V,E) in which each node in
V represents an agent, while an edge in E defines a coordination dependency
between two agents. Only interconnected agents have to coordinate their actions
at any particular instance. The global coordination problem is thus replaced by
a number of local coordination problems each involving fewer agents.

In order to find the optimal joint action a∗ we can apply VE, which is essen-
tially identical to variable elimination in a Bayesian network [10]. The algorithm
operates as follows. One agent is selected and collects all payoff functions in

which it is involved from its neighbors. Next, it optimizes its decision condition-
ally on the possible action combinations of its neighbors and communicates the
resulting ‘conditional’ payoff function to one of its neighbors. Thereafter, this
agent is eliminated from the graph. When only one agent remains, this agent
selects an action that maximizes the final conditional strategy. A second pass in
the reverse order is then performed in which every agent computes its optimal
action based on its conditional strategy and the fixed actions of its neighbors.

We will illustrate VE on the aforementioned decomposition (1). We first
eliminate agent 1. This agent depends on the local payoff functions f12 and f13

and therefore the maximization of u(a) in (1) can be written as

max
a

u(a) = max
a2,a3,a4

{

f34(a3, a4) + max
a1

[f12(a1, a2) + f13(a1, a3)]
}

. (2)

Agent 1 defines the function φ23(a2, a3) = maxa1
[f12(a1, a2)+f13(a1, a3)] and the

best-response (conditional strategy) function B1(a2, a3) = arg maxa1
[f12(a1, a2)+

f13(a1, a3)] which respectively return the maximal value and the associated best
action for agent 1 given the actions of agent 2 and 3. The function φ23(a2, a3)
is independent of agent 1, which can now be eliminated from the graph, sim-
plifying (2) to maxa u(a) = maxa2,a3,a4

[f34(a3, a4) + φ23(a2, a3)]. Note that the
elimination of agent 1 induces a new dependency between agent 2 and 3 and
thus a change in the graph’s topology.

Next, we apply the same procedure to eliminate agent 2. Since only φ23

depends on agent 2, we define B2(a3) = arg maxa2
φ23(a2, a3) and replace φ23

by φ3(a3) = maxa2
φ23(a2, a3) producing maxa u(a) = maxa3,a4

[f34(a3, a4) +
φ3(a3)], which is independent of a2. Next, we eliminate agent 3 giving maxa u(a) =
maxa4

φ4(a4) with φ4(a4) = maxa3
[f34(a3, a4) + φ3(a3)]. Agent 4 is the last

remaining agent and fixes its optimal action a∗
4 = arg maxa4

φ4(a4). There-
after, a second pass in the reverse elimination order is performed in which each
agent computes its optimal (unconditional) action from its best-response func-
tion and the fixed actions from its neighbors. In our example, agent 3 first selects
a∗
3 = B3(a

∗
4). Similarly, we get a∗

2 = B2(a
∗
3) and a∗

1 = B1(a
∗
2, a

∗
3). In the case

that one agent has more than one maximizing best-response action, it can select
one randomly, since it always communicates its choice to its neighbors.

The outcome of VE is independent of the elimination order and always re-
sults in the optimal joint action. On the other hand, the execution time of the
algorithm does depend on the elimination order1 and is exponential in the in-
duced width of the graph (the size of the largest clique computed during node
elimination). This can be slow in certain cases and in the worst case scales expo-
nentially in n. Furthermore, VE will only produce its final result after the end of
the second pass. This is not always appropriate for real-time multiagent systems
where decision making must be done under time constraints. For example, in the
RoboCup 2D Simulation League, each agent has to sent an action to the server

1 Computing the optimal order for minimizing the runtime costs is known to be NP-
complete, but good heuristics exists, e.g., minimum deficiency search which first
eliminates the agent with the minimum number of neighbors [11].

PSfrag replacements

1 2

3

4

µ12(a2)

µ21(a1)

µ23(a3)

µ32(a2)

µ24(a4)

µ42(a2)

Fig. 1. Graphical representation of different messages µij in a graph with four agents.

within 100ms. In these cases, an anytime algorithm that improves the quality of
the solution over time would be more appropriate.

3 The Max-plus Algorithm

In this section, we describe the max-plus algorithm [7–9, 6] as an approximate
alternative to VE. The max-plus algorithm is a popular method for comput-
ing the maximum a posteriori (MAP) configuration in an (unnormalized) undi-
rected graphical model. This method, analogous to the belief propagation (BP)
or sum-product algorithm in Bayesian networks, operates by iteratively sending
messages µij(aj), which can be regarded as locally optimized payoff functions,
between agent i and j over the edges of the graph. For tree-structured graphs, the
message updates converge to a fixed point after a finite number of iterations [7].

We can translate the above result to our multiagent decision making problem,
since computing the MAP configuration is equivalent to finding the optimal joint
action in a CG [6]. Suppose that we have a coordination graph G = (V,E) with
|V | vertexes and |E| edges. Instead of variables, the nodes in V represent agents,
while the global payoff function can be decomposed as follows2

u(a) =
∑

i∈V

fi(ai) +
∑

(i,j)∈E

fij(ai, aj). (3)

Here fi denotes a local payoff function for agent i and is only based on its
individual action ai. Furthermore, (i, j) ∈ E denotes a pair of neighboring agents
(an edge in G), and fij is a local payoff function that maps two actions (ai, aj)
to a real number fij(ai, aj). A function fi thus represents the payoff an agent
contributes to the system when it acts individually, e.g., dribbling with the ball,
and fij represents the payoff of a coordinated action, e.g., a coordinated pass.

Again, the goal is to find the optimal joint action a∗ that maximizes (3). Each
agent i (node in G) repeatedly sends a message µij to its neighbors j ∈ Γ (i),
where µij maps an action aj of agent j to a real number as follows:

µij(aj) = max
ai

{

fi(ai) + fij(ai, aj) +
∑

k∈Γ (i)\j

µki(ai)
}

+ cij , (4)

2 Note that this function u(a) is analogous to the log-transform of an (unnormalized)
factorized probability distribution for which the MAP state is sought.

centralized max-plus algorithm for CG = (V, E)
intialize µji = µij = 0 for (i, j) ∈ E, gi = 0 for i ∈ V and m = −∞
while fixed-point = false and deadline to sent action has not yet arrived do

// run one iteration
fixed-point = true
for every agent i do

for all neighbors j = Γ (i) do

send j message µij(aj) = maxai

˘

fi(ai)+fij(ai, aj)+
P

k∈Γ (i)\j
µki(ai)

¯

+cij

if µij(aj) differs from previous message by a small threshold then

fixed-point = false
determine gi(ai) = fi(ai) +

P

j∈Γ (i) µji(ai) and a′
i = arg maxai

gi(ai)
if use anytime extension then

if u((a′
i)) > m then

(a∗
i) = (a′

i) and m = u((a′
i))

else

(a∗
i) = (a′

i)
return (a∗

i)

Algorithm 1: Pseudo-code of the centralized max-plus algorithm.

where Γ (i) \ j represents all neighbors of i except j and cij is a normalization
vector. This message can be understood as an approximation of the maximum
payoff i can achieve for a given action of j, and is computed by maximizing
(over the actions of i) the sum of the payoff functions fi and fij and all incoming
messages to i except that from j. The agents keep exchanging messages until they
converge. Fig. 1 shows a CG with four agents and the corresponding messages.

A message µij in max-plus has three important differences with respect to
the conditional strategies in VE. First, before convergence each message is an
approximation of the exact value (conditional payoff) since it depends on the
incoming (still unconverged) messages. Second, an agent i only has to sum over
the received messages from its neighbors defined over its individual actions,
instead of enumerating over all possible action combinations of its neighbors
(this makes the algorithm tractable). Finally, in VE the elimination of an agent
often causes a change in the graph topology. In the max-plus algorithm, messages
are always sent over the edges of the original graph.

For trees the messages converge to a fixed-point within a finite number of
steps [7, 9]. A message µij(aj) then equals the payoff the subtree with agent i as
root can produce when agent j performs action aj . If, at convergence, we define

gi(ai) = fi(ai) +
∑

j∈Γ (i)

µji(ai), (5)

then we can show that gi(ai) = max{a′|a′

i
=ai} u(a′) holds [6]. Each agent i now

individually selects its optimal action a∗
i = arg maxai

gi(ai). If there is only
one maximizing action for every agent i, the globally optimal joint action a∗ =
arg maxa u(a) is unique and has elements a∗ = (a∗

i). Note that this global optimal
joint action is computed by only local optimizations (each node maximizes gi(ai)

distributed max-plus for agent i, CG = (V, E), spanning tree ST = (V, S)
initialize µji = µij = 0 for j ∈ Γ (i), gi = 0, pi = 0 and m = −∞
while deadline to sent action has not yet arrived do

wait for message msg

if msg = µji(ai) // max-plus message then

for all neighbors j = Γ (i) do

compute µij(aj) = maxai

˘

fi(ai) + fij(ai, aj) +
P

k∈Γ (i)\j
µki(ai)

¯

+ cij

send message µij(aj) to agent j (if it differs from last sent message)
if use anytime extension then

if heuristic indicates global payoff should be evaluated then

send evaluate(i) to agent i (me) // initiate computation global payoff
else

a∗
i = arg maxai

[fi(ai) +
P

j∈Γ (i) µji(ai)]

if msg = evaluate(j) // receive request for evaluation from agent j then

lock a′
i = arg maxai

[fi(ai) +
P

j∈Γ (i) µji(ai)] and set pi = 0 if a′
i not locked

send evaluate(i) to all neighbors (parent and children) in ST 6= j

if i = leaf in ST then

send accumulate payoff(0) to agent i (me) // initiate accumulation payoffs
if msg = accumulate payoff(pj) from agent j then

pi = pi + pj // add payoff child j

if received accumulated payoff from all children in ST then

get actions a′
j from j = Γ (i) in CG and set gi = fi(a

′
i) + 1

2

P

j∈Γ (i) fij(a
′
i, a

′
j)

if i = root of ST then

send global payoff(gi + pi) to all children in ST

else

send accumulate payoff(gi + pi) to parent in ST

if msg = global payoff(g) then

if g > m then

a∗
i = a′

i and m = g

send global payoff(g) to all children in ST and unlock action a′
i

return a∗
i

Algorithm 2: Pseudo-code of a distributed max-plus implementation.

separately). In case the local maximizers are not unique, an optimal joint action
can be computed by a dynamic programming technique [9, sec. 3.1].

Unfortunately, in graphs with cycles there are no guarantees that either max-
plus converges or that the local maximizers a∗

i = arg maxai
gi(ai) correspond to

the global optimum. It has been shown that a fixed point of message passings
exists [9], but there is no algorithm yet that can provably converge to such
a solution. However, bounds are available that characterize the quality of the
solution if the algorithm converges [12]. In practice, the max-product algorithm
has been successfully applied in graphs with cycles [8, 13, 14].

The max-plus algorithm can both be implemented in a centralized and dis-
tributed version. In the distributed implementation, each agent computes and
sends updated messages after it has received a new (and different) message from
one of its neighbors. In this case, messages are sent in parallel, resulting in a com-

putational advantage over the sequential execution of the centralized algorithm.
However, an additional complexity arises since each agent has to individually
determine whether the system has converged or when it should report its action.
In general we can assume that each agent receives a ‘deadline’ signal (either from
an external source or from an internal synchronized timing signal) after which it
must report its action. This, in turn, necessitates the development of an anytime
algorithm in which each (local) action is only updated when the corresponding
global payoff improves upon the best one found so far. In the centralized ver-
sion of Alg. 1, we therefore compute the global payoff after every iteration by
inserting the current computed joint action into (3). For the distributed case
in Alg. 2 the evaluation of the (distributed) joint action is much more complex
and is only initiated by an agent when it believes it is worthwhile to do so, e.g.,
after a big increase in the values of the received messages. This agent starts the
propagation of an ‘evaluation’ over a spanning tree ST of the nodes in G. This
tree is fixed beforehand and common knowledge among all agents. An agent
receiving an evaluation message fixes its individual action. When an agent is a
leaf of ST it also computes its local contribution to the global payoff and sends
it to its parent in ST . Each parent accumulates all payoffs of its children and
after adding its own contribution sends the result to its parent. Finally, when
the root of ST has received all accumulated payoffs from its children, the sum of
these payoffs (global payoff) is distributed to all nodes in ST . An agent updates
its best individual action a∗

i only when this payoff improves upon the best one
found so far. When the ‘deadline’ signal arrives, each agent thus does not report
the action corresponding to the current messages, but the action related to the
highest found global payoff. Alg. 1 and Alg. 2 respectively show a centralized
and a distributed version in pseudo-code.

4 Experiments

In this section, we describe our experiments with the max-plus algorithm on
differently shaped graphs. Since our focus in this paper is on the resulting poli-
cies and the corresponding (global) payoff, we used the centralized algorithm
from Alg. 1. We first tested it on trees with |V | = 100 agents, each having
|Ai| = 4 actions and a fixed number of neighbors. We created 24 trees in which
the number of neighbors per node ranged between [2, 25]. Since we fixed the num-
ber of agents, each tree had 99 edges but a different depth. Each edge (i, j) ∈ E

was associated with a payoff function fij where each action combination was
assigned a payoff fij(ai, aj) generated from a normal distribution N (0, 1).

We applied both the VE and max-plus algorithm to compute the joint action.
In VE we always eliminated the agent with the minimum number of neighbors,
such that each local maximization step involved at most two agents. For the
max-plus algorithm, we applied both a random order and the same order as VE
to select the agent to sent its messages. Note that in the latter case, the second
iteration is the reverse order of the first (comparable to the reversed pass in VE).

2 4 6 8 10 12 14
0.75

0.8

0.85

0.9

0.95

1

#iterations

pa
yo

ff
m

ax
 p

lu
s/

pa
yo

ff
ve

variable elimination
max−plus (random order)
max−plus (ve order)

Fig. 2. Average payoff for the max-plus algorithm after each iteration.

Fig. 2 shows the relative payoff found with max-plus with respect to the
optimal payoff after each iteration. Results are averaged over all 24 graphs. The
policy converges to the optimal solution after a few iterations. When using the
elimination order of VE to select the next agent, it always converges after two
iterations. For this order, each message only has to be computed once (see [15])
and the two methods become equivalent. When using a random order, it takes
a few iterations before the same information is propagated through the graph.

We also tested max-plus on graphs with cycles. Now, because an outgoing
message from agent i can eventually become part of its incoming messages,
the values of the messages can become extremely large. Therefore, as in [9],
we normalize each sent message by subtracting the average of all values in µik

using cij = 1
|Ak|

∑

k µik(ak) in (4). Furthermore, we stopped max-plus after 100

iterations when the messages did not converge (as we will see later in Fig. 4 the
policy has stabilized at this point).

For our experiments, we created graphs with 15 agents, and a varying number
of edges. In order to get a balanced graph in which each agent approximately had
the same number of neighbors, we randomly added edges between the agents with
the minimum number of edges. We generated 100 graphs for each |E| ∈ [8, 37],
resulting in 3000 graphs. Fig. 3(a)-3(c) depict example graphs with respectively
15, 23 and 37 edges (on average 2, 3.07 and 4.93 neighbors per node).

We applied the above procedure to create three test sets. In the first set,
each edge (i, j) ∈ E was associated with a payoff function fij defined over five
actions per agent and each action combination was assigned a random payoff
fij(ai, aj) ∈ N (0, 1). In the second set, we added one outlier to each payoff
function: for a randomly picked joint action, the corresponding payoff value was
set to 10 ∗N (0, 1). For the third test set, we specified a payoff function using 10
actions per agent and the same method as in the first set to generate the values.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
1

2

3

4

5

6

78

9

10

11

12

13

14
15

(a) Example graph with 15 edges (on
average 2 neighbors per agent).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
1

2

3

4

5

6

78

9

10

11

12

13

14
15

(b) Example graph with 23 edges (on
average 3.07 neighbors per agent).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
1

2

3

4

5

6

78

9

10

11

12

13

14
15

(c) Example graph with 37 edges (on
average 4.93 neighbors per agent).

1 1.5 2 2.5 3 3.5 4 4.5
0

100

200

300

400

500

avg. neighbors per node

tim
e

(m
se

c)
variable elimination
max−plus

(d) Timing comparisons VE and
max-plus (5 actions per agent).

1 1.5 2 2.5 3 3.5 4 4.5
0

100

200

300

400

500

avg. neighbors per node

tim
e

(m
se

c)

variable elimination
max−plus

(e) Timing comparisons VE and max-
plus (5 actions per agent and out-
liers).

1 1.5 2 2.5 3 3.5 4 4.5
0

100

200

300

400

500

avg. neighbors per node

tim
e

(m
se

c)

variable elimination
max−plus

(f) Timing comparisons VE and max-
plus (10 actions per agent).

Fig. 3. Example graphs and (average) timing results for both VE and max-plus for
different graphs with 15 agents and cycles.

10 20 30 40 50 60 70 80 90 100
0.7

0.75

0.8

0.85

0.9

0.95

1

#iterations

pa
yo

ff
m

ax
 p

lu
s/

pa
yo

ff
ve

variable elimination
max−plus <= 2 avg. neigh.
max−plus <= 3 avg. neigh.
max−plus <= 4 avg. neigh
max−plus <= 5 avg. neigh

(a) Payoff max-plus after each itera-
tion (5 actions per agent).

10 20 30 40 50 60 70 80 90 100
0.7

0.75

0.8

0.85

0.9

0.95

1

#iterations

pa
yo

ff
m

ax
 p

lu
s/

pa
yo

ff
ve

variable elimination
max−plus <= 2 avg. neigh.
max−plus <= 3 avg. neigh.
max−plus <= 4 avg. neigh
max−plus <= 5 avg. neigh

(b) Payoff anytime max-plus after
each iteration (5 actions per agent).

10 20 30 40 50 60 70 80 90 100
0.7

0.75

0.8

0.85

0.9

0.95

1

#iterations

pa
yo

ff
m

ax
 p

lu
s/

pa
yo

ff
ve

variable elimination
max−plus <= 2 avg. neigh.
max−plus <= 3 avg. neigh.
max−plus <= 4 avg. neigh
max−plus <= 5 avg. neigh

(c) Payoff max-plus after each itera-
tion (5 actions per agent and outliers)

10 20 30 40 50 60 70 80 90 100
0.7

0.75

0.8

0.85

0.9

0.95

1

#iterations

pa
yo

ff
m

ax
 p

lu
s/

pa
yo

ff
ve

variable elimination
max−plus <= 2 avg. neigh.
max−plus <= 3 avg. neigh.
max−plus <= 4 avg. neigh
max−plus <= 5 avg. neigh

(d) Payoff anytime max-plus after
each iteration (5 actions per agent
and outliers).

20 40 60 80 100 120 140
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

#iterations

pa
yo

ff
m

ax
 p

lu
s/

pa
yo

ff
ve

variable elimination
max−plus <= 2 avg. neigh.
max−plus <= 3 avg. neigh.
max−plus <= 4 avg. neigh
max−plus <= 5 avg. neigh

(e) Payoff max-plus after each itera-
tion (10 actions per agent).

20 40 60 80 100 120 140
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

#iterations

pa
yo

ff
m

ax
 p

lu
s/

pa
yo

ff
ve

variable elimination
max−plus <= 2 avg. neigh.
max−plus <= 3 avg. neigh.
max−plus <= 4 avg. neigh
max−plus <= 5 avg. neigh

(f) Payoff anytime max-plus after
each iteration (10 actions per agent).

Fig. 4. Relative payoff with respect to VE for both max-plus with (graphs on the
right) and without (graphs on the left) the anytime extension on different graphs with
15 agents and cycles.

The timing results3 for the three different test sets4 are plotted in Fig. 3(d)-
3(f). They show that the time for the max-plus algorithm grows linearly as
the complexity of the graphs increases (the number of messages is related to
the number of edges in the graph). The time for VE grows exponentially since
it has to enumerate over an increasing number of neighboring agents in each
local maximization step. Furthermore, the elimination of an agent often causes
a neighboring agent to receive a conditional strategy involving agents it did not
had to coordinate before, changing the graph topology to an even denser graph.

Fig. 4 shows the relative payoff found with the max-plus algorithm with re-
spect to the optimal payoff after each iteration for graphs with different average
numbers of neighbors. For the loosely connected graphs (less than two neigh-
bors) the result is similar to the optimal result after a few iterations only. As the
number of neighbors increases, the resulting policy becomes worse. This effect
is less evident in the graphs with outliers (Fig. 4(c)) since certain action combi-
nations are clearly preferred lowering the number of oscillations. Increasing the
number of actions per agents (Fig. 4(e)) has a negative influence on the result
because of the increase in the total number of action combinations.

Applying the anytime version as discussed in Section 3, improves the results
for all graphs indicating that the failing convergence of the messages causes
the algorithm to oscillate between different joint actions and ‘forget’ good joint
actions. Fig. 4 shows that for all sets near-optimal policies are found, although
it takes more iterations for the graphs with ten actions per agent to find them.

5 Conclusion and Future Directions

In this paper, we continued the work started in [6] and investigated further the
usage of the max-plus algorithm as an alternative action selection method to
variable elimination (VE) in coordination graphs (CG). VE is an exact method
that will always report the optimal joint action, but is slow for densely connected
graphs with cycles as its worst-case complexity is exponential in the number of
agents. Furthermore, this method is only able to report a solution after the
complete algorithm has ended. The max-plus algorithm operates by repeatedly
sending local payoff messages over the edges in the CG. By performing a local
computation based on its incoming messages, each agent is able to select its
individual action. We provided empirical evidence that this method converges to
the optimal joint action for tree-structured graphs (as shown by theory), and that
it finds near optimal solutions in large, highly connected graphs with cycles an
order of magnitude faster than VE. Another advantage of the max-plus algorithm
is that it can be implemented fully distributed using asynchronous and parallel
message passing. For these reasons, we believe max-plus is an appropriate action
selection technique for cooperative real-time systems such as used in RoboCup.

3 All results are generated on a 3.4GHz / 2GB machine using a C++ implementation.
4 For the graphs with ten actions per agent and more than four neighbors per node,

VE was not always able to compute a policy since the intermediate computed tables
grew too large for the available memory. These graphs were removed from the set.

As future research, we are planning to implement the max-plus algorithm
in our UvA Trilearn 2D simulation team. In previous years, we used VE for
cooperative action selection5, but computational constraints restricted us in the
number of coordination dependencies (see [5]). Using the max-plus algorithm we
hope to be able to introduce more specialized fine-grained coordination.

Finally, we like to apply max-plus to sequential decision making. In [16, 4]
CGs are used in combination with VE to learn coordinated policies of the agents
using reinforcement learning. We like to investigate whether the usage of max-
plus can help to learn the coordinated behavior for larger groups of agents.

Acknowledgments

This research is supported by PROGRESS, the embedded systems research pro-
gram of the Dutch organization for Scientific Research NWO, the Dutch Ministry
of Economic Affairs and the Technology Foundation STW, project AES 5414.

References

1. Weiss, G., ed.: Multiagent Systems: a Modern Approach to Distributed Artificial
Intelligence. MIT Press (1999)

2. Vlassis, N.: A concise introduction to multiagent systems and distributed AI,
Informatics Institute, University of Amsterdam (2003)

3. Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E.: RoboCup: The Robot
World Cup Initiative. In: Proc. of the IJCAI-95 Workshop on Entertainment and
AI/Alife. (1995)

4. Guestrin, C., Koller, D., Parr, R.: Multiagent planning with factored MDPs. In:
Advances in Neural Information Processing Systems 14, The MIT Press (2002)

5. Kok, J.R., Spaan, M.T.J., Vlassis, N.: Non-communicative multi-robot coordi-
nation in dynamic environments. Robotics and Autonomous Systems 50 (2005)
99–114

6. Vlassis, N., Elhorst, R., Kok, J.R.: Anytime algorithms for multiagent decision
making using coordination graphs. In: Proc. of the International Conference on
Systems, Man and Cybernetics, The Hague, The Netherlands (2004)

7. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufman (1988)
8. Yedidia, J., Freeman, W., Weiss, Y.: Understanding belief propagation and its gen-

eralizations. In: Exploring Artificial Intelligence in the New Millennium. Morgan
Kaufmann Publishers Inc. (2003) 239–269

9. Wainwright, M., Jaakkola, T., Willsky, A.: Tree consistency and bounds on the
performance of the max-product algorithm and its generalizations. Statistics and
Computing 14 (2004) 143–166

10. Zhang, N.L., Poole, D.: Exploiting causal independence in bayesian network infer-
ence. Journal of Artificial Intelligence Research 5 (1996) 301–328

11. Bertelé, U., Brioschir, F.: Nonserial dynamic programming. Academic Press (1972)
12. Wainwright, M., Jaakkola, T., Willsky, A.: Tree consistency and bounds on the per-

formance of the max-product algorithm and its generalizations. Technical report,
P-2554, LIDS-MIT (2002)

5 Since the agents in the 2D simulator cannot communicate directly, each agent models
the complete algorithm separately using common knowledge assumptions (see [5]).

13. Crick, C., Pfeffer, A.: Loopy belief propagation as a basis for communication in
sensor networks. In: Proc. of the 19th Conference on Uncertainty in AI. (2003)

14. Murphy, K., Weiss, Y., Jordan, M.: Loopy belief propagation for approximate
inference: An empirical study. In: Proc. 15th Conf. on Uncertainty in Artificial
Intelligence, Stockholm, Sweden (1999)

15. Loeliger, H.A.: An introduction to factor graphs. In: IEEE Signal Proc. Mag.
(2004) 28–41

16. Kok, J.R., Vlassis, N.: Sparse Cooperative Q-learning. In Greiner, R., Schuurmans,
D., eds.: Proc. of the 21st Int. Conf. on Machine Learning, ACM (2004) 481–488

