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Abstract. This paper shortly describes the main features of the UvA

Trilearn soccer simulation team, which participates in the RoboCup com-
petition since 2001. In the last years we mostly concentrated on the co-
ordination of the different agents. For this we applied the framework of
coordination graphs. In this framework, a high-level strategy is specified
using value rules which describe the effectiveness of a (possible joint)
action in a specific situation. During a game, a variable elimination algo-
rithm is applied on all applicable rules in order to find the individual
actions for the agents which maximize the global effectiveness. Vari-
able elimination is exact, but it does not scale well to systems where
many agents depend on each other. In our UvA Trilearn 2005 team, we
therefore experiment with the usage of the max-plus algorithm, as an
approximate alternative to variable elimination.

1 Introduction

UvA Trilearn started as a masters’ project in 2001. In the first years, much
of the effort went into building a good base code. This resulted in a multi-
threaded three-layer architecture with an advanced synchronization method, a
probabilistic world model, and a set of basis agent skills. On top of this, we
first built a simple high-level team strategy, similar to the one released by FC
Portugal [1], to make a working team. This base code, which we used as a basis
for our team that won the World Championship in RoboCup-2003, is used by
several teams and publicly available1.

In the last few years, we mainly concentrated on coordinating the different
agents. For this we applied the framework of coordination graphs [2]. As part of
this framework, a variable elimination algorithm is used. Although this method is
exact, it is not appropriate for real-time systems. For this year’s team, we inves-
tigate the max-plus algorithm, an instance of the belief propagation algorithm,
as an approximate alternative to variable elimination.

The setup of this paper is as follows. In Section Section 2 we will review the
coordination graph framework using variable elimination. In Section Section 3
we will describe the max-plus algorithm and in Section 4 we will end with a
conclusion.

1 It can be downloaded from http://www.science.uva.nl/~jellekok/robocup/.



2 Coordination Graphs

In order to coordinate the different players on the field, we apply the framework
of coordination graphs [2]. We (manually) specify a complete (high-level) team
strategy using value rules, which are propositional rules over state and action
variables. Each value rule is associated with a local payoff that is obtained when
the corresponding state and action variables are applicable. The sum of the
payoffs of the applicable rules define the global contribution to the system. Such a
set of value rules can be regarded as a sparse representation of the complete state-
action representation, since it decomposes the global coordination problem into
the sum of a set of smaller local terms. An example of a value rule representing
a coordinated pass between player 1 and 2 that is applicable when this pass is
not blocked by an opponent and contributes a local payoff of 10 looks as

〈ρ1;¬passBlocked(1,2) ∧ a1 = passTo(2) ∧ a2 = receivePass(1) : 10〉,

while an individual dribble action could be specified as

〈ρ2; isEmptySpace(1,north) ∧ a1 = dribble(north) : 5〉.

Given a set of value rules, a coordination graph can be constructed. Each
node represents an agent, while an edge indicates that the corresponding agents
have to coordinate their actions (and both agents are thus involved in at least
one value rule). In order to determine a joint action for a specific situation max-
imizing the sum of the payoffs of the applicable rules, the following procedure is
applied. First all rules that are not applicable in the current state are removed.
In most cases, this simplifies the topology of the graph significantly. In order
to reach a jointly optimal action, a variable elimination (VE) algorithm is then
applied that iteratively eliminates an agent by solving a local coordination prob-
lem and propagating the result to its neighbors in the graph using a message
passing scheme. When all but one agent are eliminated, this last agent fixes its
strategy and a pass in the reverse order is performed in which each agent fixes
its strategy by conditioning on the strategies of its neighbors in the graph. This
method is exact and will always return the joint action that maximizes the sum
of the payoff values in the applicable rules. See [3] for details of the usage of this
method in our RoboCup simulation team.

However, for highly connected network this method scales exponentially in
the number of agents. Furthermore, VE will only produce its final result after
the complete algorithm is finalized. This makes is not always appropriate for
real-time multiagent systems where decision making must be done under time
constraints. For this reason, we investigated the use of the max-plus algorithm,
analogous to the belief propagation algorithm [4, 5] in Bayesian networks, as an
alternative to VE for multiagent decision making. We will discuss this method
in more detail in the next section.



3 Max-plus Algorithm

In this Section, we will briefly review the max-plus algorithm. See [10] for a more
detailed description,

The max-plus algorithm [4–7] is a popular method for computing the maxi-

mum a posteriori (MAP) configuration in an (unnormalized) undirected graph-
ical model. This method, analogous to the belief propagation (BP) or sum-
product algorithm, operates by iteratively sending messages µij(aj) between
agent i and j over the edges of the graph. We can apply this procedure to our
multiagent decision making problem. Suppose that we have a coordination graph
G which is constructed from all applicable value rules in the current situation.
Each node in the graph represent an agent, while the edges define the depen-
dencies between the agents. The global payoff for a given situation, can then be
defined as the sum of all local rules

u(a) =
∑

i∈V

fi(ai) +
∑

(i,j)∈E

fij(ai, aj) (1)

Here fi denotes a value rule based on an individual action ai. Furthermore, (i, j)
denotes a pair of neighboring agents (an edge in G), and fij is a value rule that
involves a pair of actions (ai, aj) to a real number fij(ai, aj).

Again, the goal is to find the optimal joint action a∗ = arg maxa u(a) that
maximizes (1). For this, each agent i (node in G) repeatedly sends a message µij

to one of its neighbors j ∈ Γ (i), where µij is a local payoff function that maps
an action aj of agent j to a real number µij(aj) and is defined as follows:

µij(aj) = max
ai

{

fi(ai) + fij(ai, aj) +
∑

k∈Γ (i)\j

µki(ai)
}

+ Cij , (2)

where the notation Γ (i) \ j means all neighbors of node i except node j and
Cij is an arbitrary constant (that does not depend on aj). This message can be
understood as the approximately maximum payoff agent i can produce given the
action of agent j and equals the sum of the payoff functions fi and fij and all
incoming messages to agent i except that from agent j. Fig. 1 shows a graphical
representation of such messages. The agents keep exchanging messages until they
converge (do not change anymore) or a certain amount of time has elapsed.

It can be shown that when G is cycle-free, max-plus will converge to a fixed-
point within a finite number of steps [4, 5]. Then if we define

gi(ai) = fi(ai) +
∑

j∈Γ (i)

µji(ai), (3)

we can show that

gi(ai) = max
{a′|a′

i
=ai}

u(a′) (4)

holds. Each agent i can now individually select its locally optimal action a∗
i =

arg maxai
gi(ai). If this action is unique for every agent i (there is only one
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Fig. 1. Graphical representation of different messages µij in a graph with four agents.

maximizing action), the globally optimal joint action a∗ = arg maxa u(a) is also
unique and has elements a∗ = (a∗

i ). Note that this global optimal joint action is
computed by only local optimizations (each node maximizes gi(ai) separately).

In graphs with cycles, these convergence proofs do not hold, and there are
no guarantees that either max-plus will converge or that the local maximizers
a∗

i = arg maxai
gi(ai) will correspond to the global optimum. In [5] it is shown

that a fixed point of message passing exists in graphs with cycles, but there is no
known algorithm yet that can provably converge to such a solution. However, in
practice, the max-product algorithm has been successfully applied within graphs
with cycles [6, 8, 9], which also makes it an attractive method in our setting. Even
when the messages do not converge, the corresponding joint action shows near
optimal results. See [10] for details and our experiments on randomly generated
graphs.

Finally, note that the agents in the 2D simulator are not allowed to directly
communicate with each other. Therefore, in order to implement the max-plus
algorithm in our RoboCup simulation team, we have to model the complete
procedure separately in each agent using some common knowledge assumptions.
See [3] for a description of such an approach when variable elimination is used
to compute the joint action, which has to cope with exactly the same problem.

4 Conclusion

In this paper we addressed the main contributions of our simulation team UvA

Trilearn. The main improvement in UvA Trilearn 2005 is the usage of the max-
plus algorithm in order to speed-up the computation of determining the joint
action in the coordination graph framework introduced in UvA Trilearn 2003.

The max-plus algorithm computes the individual actions significantly faster
than the previous used variable elimination algorithm, while it still results in
comparable results. Therefore, we can apply the coordination graph framework
on a much larger and more complicated set of value rules as in the previous years.



We are currently incorporating the max-plus algorithm in our UvA Trilearn 2005

simulation team and are also extending the team strategy to include more specific
and fine-grained coordination.
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